Events
1st PIER Science Slam
WPC Theoretical Physics Symposium 2021
International Cosmic Ray Conference 2021
1st PIER Science Slam
WPC Theoretical Physics Symposium 2021
International Cosmic Ray Conference 2021
30 views
0 likes
0 favorites
Discussion timeslot (ZOOM-Meeting): 16. July 2021 - 18:00
ZOOM-Meeting URL: https://icrc2021.desy.de/pf_access_abstracts
Corresponding Session: https://icrc2021-venue.desy.de/channel/Presenter-Forum-1-Evening-All-Categories/48
Abstract:
'Extreme High-frequency-peaked BL Lac (EHBL) objects, a subclass of blazars characterised by a synchrotron peak frequency exceeding 10^17 Hz, and, in some cases, an inverse Compton peak energy exceeding 1 TeV, are ideal sources to study the InterGalactic Magnetic Field (IGMF) due to the hardness of their spectrum. HESS J1943+213 is a Very High Energy (VHE, larger 100 GeV) γ-ray source shining through the Galactic Plane discovered by HESS. Recently, also VERITAS published a VHE spectrum spanning from 200 GeV up to about 2 TeV consistent with that of HESS within the errors (photon index=2.8). The archetypical EHBL source is 1ES 0229+200 which has a redshift z=0.14 and a similar VHE slope (photon index=2.9). Since the observed flux of HESS J1943+213 at 1 TeV is more than a factor of two larger, and its redshift is bigger (z smaller 0.23), a much larger reprocessed power is expected, which allowed us to study the magnetic field strength with great accuracy. We used the simulation code CRpropa 3 to simulate the cascade emission assuming different IGMF configurations and a detailed analysis of the 10 years of Fermi-LAT data to extend the observed VHE spectrum down to 5 GeV. Comparing the cascade spectrum with the combined spectra from Fermi-LAT and Cherenkov telescopes we derived a lower limit on the IGMF strength of the order of 6e-14 G which is at least a factor of 4 larger than previously published results obtained with the source 1ES0229+200. Effects of the duty cycle are also taken into consideration.'
Authors: Paolo Da Vela | Stefano Silvestri | Sofia Ventura | Giacomo Bonnoli
Indico-ID: 914
Proceeding URL: https://pos.sissa.it/395/633