Events
1st PIER Science Slam
WPC Theoretical Physics Symposium 2021
International Cosmic Ray Conference 2021
1st PIER Science Slam
WPC Theoretical Physics Symposium 2021
International Cosmic Ray Conference 2021
38 views
1 likes
0 favorites
Discussion timeslot (ZOOM-Meeting): 16. July 2021 - 12:00
ZOOM-Meeting URL: https://desy.zoom.us/j/92210078166
ZOOM-Meeting ID: 92210078166
ZOOM-Meeting Passcode: ICRC2021
Corresponding Session: https://icrc2021-venue.desy.de/channel/12-Galactic-Particle-Acceleration-including-PIC-CRI-CRD-MM/127
Live-Stream URL: https://icrc2021-venue.desy.de/livestream/Discussion-03/4
Abstract:
'Origin of cosmic rays (CRs) is still not known. In this work we argue that PeV cosmic rays can be accelerated during the early phase of a supernova blast wave expansion in dense red supergiant winds. We solve in spherical geometry a system combining a diffusive-convection equation which treats CR dynamics coupled to magnetohydrodynamics to follow gas dynamics. The fast shock expanding in a dense ionized wind is able to trigger the fast non-resonant streaming instability over day timescales. We investigate the maximum energy CRs can reach in this configuration accounting for pp losses. Multi-PeV energies can be reached if the progenitor mass loss rates are of the order of, or larger than, $10^{-3}$ solar masses/year. It has been recently invoked that prior to the explosion hydrogen rich massive stars can produce enhanced mass loss rates. These enhanced rates would then favor the production of a Pevatron phase in early times after the shock breakout. We discuss observational tests to probe our model using future radio and gamma-ray facilities.'
Authors: Tsuyoshi Inoue | Alexandre Marcowith | Gwenael Giacinti
Indico-ID: 387
Proceeding URL: https://pos.sissa.it/395/158