Optimization of the optical array geometry for IceCube-Gen2.

Anastasiia Omeliukh¹ on behalf of the IceCube-Gen2 Collaboration ¹DESY, Platanenallee 6, 15738 Zeuthen, Germany

IceCube-Gen2

IceCube-Gen2 optical array. Credit: IceCube Collaboration.

IceCube-Gen2 will be an extension of the existing IceCube [1] array aiming to explore the highenergy neutrino sky. Components:

- optical array;
- radio array;
- surface array;
- IceCube Upgrade [2].

"Sunflower" geometries

"Sunflower'"-like geometry is advantageous compared to IceCube's regular grid. Eight values of inter-string spacing parameters were chosen for the optimization study: 150 m, 200 m, 220 m, 240 m, 260 m, 280 m, 300 m, and 350 m.

Monte Carlo simulations and Analysis

The average muon effective area after quality cuts as a function of zenith angle for 1 PeV muons

Discovery Potentials

- Simulated and reconstructed ~50,000 triggered events for each geometry (optimization study for tracks).
- New quality cuts defined: lowenergy and high-energy sets.
- Analysis based on [3]. Point source sensitivities obtained from parameterized detector performance quantities assuming E^{-2} source spectrum and isotropic atmospheric background.

Conclusions

References

> Discovery potentials differ only slightly (especially at the horizon).

Spacings between 200 m and 280 m show good performance for both event selections because of their large muon effective area and good angular resolution.

[1] IceCube-Gen2 Collaboration, M. G. Aartsen et al. Journal of Physics G: Nuclear and Particle Physics 48 no. 6, (Apr, 2021) 060501. [2] **IceCube Collaboration**, A. Ishihara PoSICRC2019(2021) 1031. [3] IceCube-Gen2 Collaboration, J. van Santen PoSICRC2017(2018) 991.