Morphology of Gamma-Ray Halos around Middle-Aged Pulsars:

Influence of the Pulsar Proper Motion

Yi Zhang^{1,2,*}, Ruo-Yu Liu^{1,2}, S.~Z. Chen^{3,4}, Xiang-Yu Wang^{1,2}

¹School of Astronomy and Space Scienc, Nanjing University, China

²Key laboratory of Modern Astronomy and Astrophysics (Nanjing University)

³Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, China

⁴TIANFU Cosmic Ray Research Center, China

Introduction:

- Many pulsar halos have been observed by HAWC, HESS and LHAASO.
- The gamma-ray radiation arises from relativistic electrons that escape the pulsar wind nebula and diffuse in the surrounding medium.
- Given a typical transverse velocity of 300–500 km/s for a pulsar, the displacement of the pulsars due to the proper motion could be important in shaping the morphology of the pulsar halos.

Model:

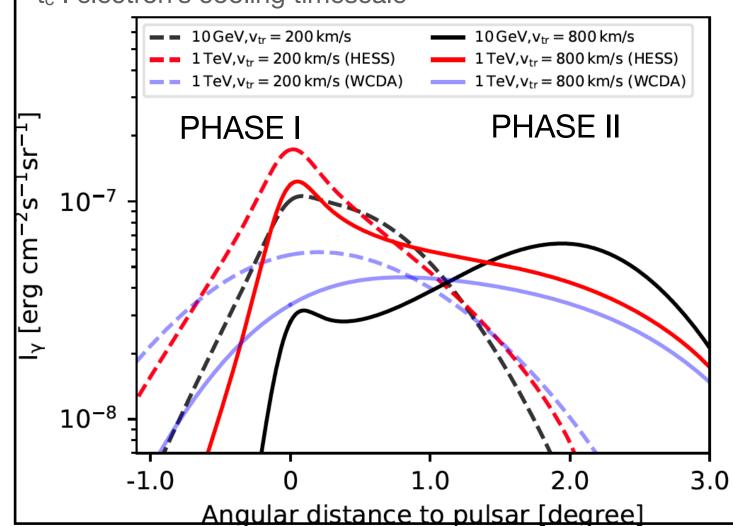
- Continuous injection of electrons
- One-zone diffusion of electrons in interstellar medium
- Synchrotron and IC cooling of electrons
- Convolving PSF of different detectors

Discuss morphology's dependence on parameters, like magnetic field, electron injection history, spectral index, et al.

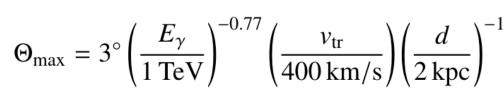
References:

- [1] Albert et al. 2020
- [2] LHAASO Collaboration, 2021
- * contact info: yi_zhang@smail.nju.edu.cn

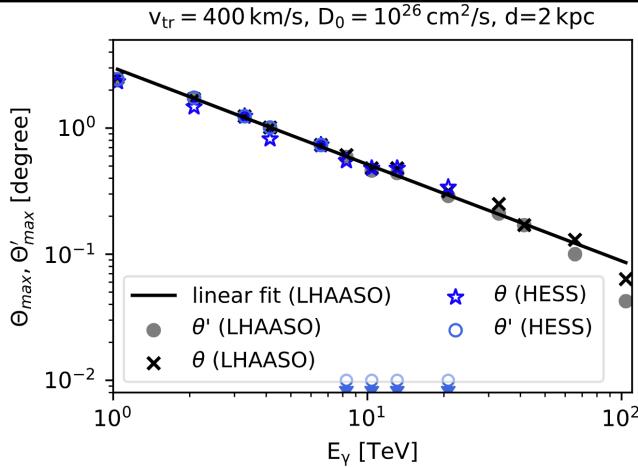
Results:


 Define three evolutionary phases of pulsar halo morphology

PHASE I : $t_{age} < t_{pd}$, $t_{age} < t_{c}$, single-peak PHASE II : $t_{pd} < t_{age} < t_{c}$, double-peak or single-peak with extension


PHASE III: tage>tc, single-peak

t_{pd}: electron's diffusion distance = pulsar displacement


 t_{c} : electron's cooling timescale

- Maximum separation angle

Application to observation
 Is the association between extended source and pulsar possible?

3HWC ¹	Pulsar	$\tau_c(\mathrm{kyr})$	d (kpc)	$v_{\rm tr}({\rm km/s})$	$ heta_{ m obs}(^\circ)$	Comment
J0540+228	B0540+23	253	1.56	215	0.83	B< 1μ G or $n < 2$
J0543+231	B0540+23	253	1.56	215	0.36	Unaligned
J0631+169	J0633+1746	342	0.19	128	0.95	Possible
J0634+180	J0633+1746	342	0.19	128	0.38	Unaligned
J0659+147	B0656+14	111	0.29	60	0.51	Unaligned
J0702+147	B0656+14	111	0.29	60	0.77	Unaligned
LHAASO ²	Pulsar	$\tau_c(\mathrm{kyr})$	d (kpc)	v _{tr} (km/s)	$\theta_{ m obs}(^{\circ})$	Comment
J2032+4102	J2032+4127	201	1.4 ^a	20.4^{b}	0.42	Impossible
J1929+1745	J1928+1746	82.6	4.6	-	0.25	$v_{\rm tr} > 2700 \rm km/s$

Conclusion:

- The morphology of pulsar halos below 10 TeV show double-peak or single-peak with an extended tail, which depends on the electron injection history.
- Due to the short cooling timescale (<50 kyr) of tens TeV electrons, the morphology of pulsar halos above 10 TeV is nearly spherical.
- We do not expect to observe the separation between distant pulsar and halo above 10 TeV with LHAASO or HAWC.