

unam

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

A theoretical model of an off-axis GRB jet

Boris Betancourt Kamenetskaia

TUM Physics Department, Technical University of Munich, Germany.

LMU Physics Department, Ludwig Maxmillians University of Munich, Germany.

in collaboration with Nissim Fraija, Maria Giovanna Dainotti, Antonio Gálvan-Gámez, Rodolfo Barniol Duran and Simone Dichiara

37th International Cosmic Ray Conference 2021 Berlin, Germany

July 24th 2021

Outline

Motivation

≻Model:

ConsiderationsMathematical expressions

≻Results:

Expected light curvesApplication: SN 2020bvc

Conclusion and summary

Motivation

Link between broad-lined IC supernovae (SNe) and long duration gamma-ray bursts (IGRBs).

Fraija, N.,..., Betancourt Kamenetskaia, B., et al., 2019.

Model: Considerations

An off-axis top-hat jet that interacts with a stratified circumburst medium $(n = A_k R^{-k})$.

>Adiabatic evolution of the forward shock. Sari, R., Piran, T. and Narayan, R., 1998.

Fraction of electrons accelerated by the shock front (ζ_e) considered. Synchrotron cooling is assumed. Eichler, D. and Waxman, E., 2005.

Two phases in the afterglow's evolution: Sari, R., Piran, T. and Halpern, J.P., 1999.
Relativistic phase: Highly collimated jet out of our line of sight.
Lateral expansion: Deceleration due to interaction with medium and increase in beaming angle (enters line of sight).

Relativistic phase bulk Lorentz factor: $\Gamma \propto (1+z)^{-\frac{k-3}{2}} \xi^{k-3} \zeta_e^2 A_k^{-\frac{1}{2}} \theta_j^{-1} \Delta \theta^{-(k-3)} \tilde{E}^{\frac{1}{2}} t^{\frac{k-3}{2}}$

The beaming cone of radiation grows until the jet enters on axis when $\Gamma \sim \Delta \theta^{-1}$ and the lateral expansion phase begins. This marks the jet break time.

Lateral expansion bulk Lorentz factor: $\Gamma \propto (1+z)^{\frac{1}{2}} \xi^{-1} A_k^{\frac{1}{2(k-3)}} \tilde{E}^{-\frac{1}{2(k-3)}} t^{-\frac{1}{2}}$

Synchrotron Light curves

Relativistic Phase

Lateral Expansion

Results: expected light curves

Panels from top to bottom:

- ➢ Radio (1.6 GHz).
- > Optical (1 eV).
- > X-ray (1 keV).

Flux density (mJy)

Flux density (mJy)

Flux density (mJy)

The colors correspond to the difference between the observation angle and the jet's opening angle $\Delta \theta$.

>X-ray light curves (at 1 keV). \geq Different stratification parameters: \triangleright Purple: ISM k = 0>Green k = 1.0>Blue k = 1.5 \succ Yellow: Wind k = 2.0>Jet break time denoted by the circles on the curves. >Behavior in the lateral expansion phase is independent of stratification.

The burst (day) Parameters: $\tilde{E} = 10^{51} \,\mathrm{erg}, \ \epsilon_{\mathrm{B}} = 10^{-2}, \ \epsilon_{\mathrm{e}} = 10^{-1}, \ p = 2.6, \ \zeta_{e} = 1, \ \xi = 1, \ \Delta\theta = 15^{\circ}, \ \theta_{j} = 5^{\circ} \ \mathrm{and} \ D_{z} = 26.5 \,\mathrm{Mpc}.$ 8

Application: SN 2020bvc

- First detection: February 4th, 2020 by the ASAS-SN team. Associated to galaxy UGC 09379 with $z \approx 0.025$.
- Agreement with the GRBassociated, broad-lined Ic SN 1998bw.
- It was also detected at X-ray frequencies.

 $\tilde{E} = 5.3 \times 10^{49} \,\mathrm{erg}, \,\epsilon_{\mathrm{B}} = 2 \times 10^{-2}, \,\epsilon_{\mathrm{e}} = 3.5 \times 10^{-3}, \,A_k = 8.47 \times 10^{25} \,\mathrm{cm}^{-\frac{3}{2}}, \ p = 2.2, \,\zeta_e = 1, \,\xi = 1, \,\Delta\theta = 23^\circ, \,\theta_j = 5^\circ \,\mathrm{and} \, D_z = 26.5 \,\mathrm{Mpc}.$

 10^{2}

Conclusion and summary

➤A model to describe the afterglow emission of an off-axis relativistic jet has been derived.

> It considers a stratified medium $n \propto R^{-k}$, which directly influences the afterglow's evolution in the relativistic phase.

Lateral expansion flux drops with the same power law, independent of stratification.

>SN 2020bvc X-ray flux has been successfully fitted with this model for k=1.5 .

Thank you for your attention!