Turbulence and its impact on particle acceleration/transport and the implications on gamma-ray observations

> Siyao Xu, Hubble Fellow Institute for Advanced Study

Turbulence and cosmic rays (CRs)

Turbulence and CRs

Interstellar turbulence spectrum

CR energy spectrum measured after 2000

Gamma-ray observations

Gamma-ray sky above 600 MeV

Magnetic field lines traced by synchrotron radiation at 30 GHz

De Angelis & Mallamaci 2018; Di Sciascio 2019

ESA and the Planck Collaboration

Space- and ground-based gamma-ray detectors

Sensitivity of different X- and gamma-ray instruments

De Angelis & Mallamaci 2018

55 Ultra-High-Energy Gamma-Ray Sources and PeVatrons | GAI

Gamma-ray emission from supernova remnants (SNRs)

VERITAS TeV gamma-ray count map around Tycho's SNR

Acciari et al. 2011, Hwang et al. 2002, Heyer et al. 1998

H.E.S.S. image of RX 1713.7–3946

Fermi LAT count map of W44

Uchiyama & Fermi LAT Collaboration 2010

Aharonian et al 2005, Uchiyama et al. 2002, Hewitt & Lemoine-Goumard 2015

A great variety of gamma ray spectra

Other candidates of proton PeVatrons

Gamma-ray emission from star-forming galaxies

Gamma-ray spectra of starbursts

Diffusion different from MW

Gamma-ray vs. IR luminosities for the SFGs

Ajello et al. 2020, Griffin et al. 2016

Krumholz, Crocker, Xu, et al. 2020

What we learn from gamma-ray observations, e.g.

- A great variety in luminosities and spectra of SNRs and other CR sources.
- Future gamma-ray observations will reveal a larger variety and statistics of CR sources and more PeVatrons.
- A large energy coverage is important in distinguishing between leptonic and hadronic processes.
- Gamma-ray luminosity vs. radio/infrared luminosity.
- Suppressed diffusion in the vicinity of CR sources, e.g., SNRs, pulsar wind nebulae, star clusters, and in molecular clouds.

- What are the dominant sources of Galactic CRs, different sources for GeV and PeV?
- The relation between CRs and star formation?
- Does CR acceleration depend on the source & local environment (not considered in the standard DSA model)?
- Does CR diffusion depend on the local environment, near sources and near Earth, Galactic and extragalactic ISM?
- What is the CR injection spectrum at Galactic sources? Any modification due to the diffusion near the sources?

Astrophysical turbulence

CR acceleration & diffusion

1. Turbulence-wave duality

 $\perp B_{local}$

Turbulent energy cascade

 $\parallel B_{local}$

One-period wave

Large Eddies (Il Plane)

Large scale

Anisotropic turbulence

e.g., Cho & Lazarian 2003; Beresnyak 2014; Guo et al. 2021

Critical balance

Goldreich & Sridhar 1995; Lazarian & Vishniac 1999

2. Bi-directional energy flow

Turbulent dynamo

Turbulent reconnection

Lazarian & Vishniac 1999

Turbulent kinetic energy

Magnetic energy

on all length scales along the turbulent energy cascade

2. Bi-directional energy flow

Kowal et al.2017, 2019

Turbulent dynamo Turbulent reconnection

Turbulent kinetic energy Agnetic energy

on all length scales along the turbulent energy cascade

Various turbulent spectra

e.g., Kowal et al. 2007; Zhdankin et al. 2017

Xu, Ji, & Lazarian 2019;

e.g., Federrath & Klessen 2012; Padoan et al. 2016; Kritsuk et al. 2017; Fornieri et al. 2021

Xu & Yan 2013

Variety of astrophysical turbulence

 Rich and diverse variety of turbulence properties in the multi-phase interstellar medium (ISM)

 M_A , M_S

 Turbulence in our local ISM is not representative

Hu et al. in prep

Gradient technique

e.g., Hsieh, et al. 2019; Zhang et al. 2019; Yuen & Lazarian 2020; Xu & Hu 2021; Hu et al. 2021

MHD turbulence and particle acceleration

Shock acceleration Hydrodynamic energy

e.g., Beresnyak et al. 2009, Drury & Downes 2012, Bruggen 2013

Turbulence

- Decrease acceleration time
- Increase the maximum energy

Turbulent Reconnection acceleration Magnetic energy

e.g., de Gouveia Dal Pino & Lazarian, 2005; Kowal et al. 2012; Beresnyak & Li 2016; Guo et al. 2016; Comisso & Sironi 2019

Turbulence

- Efficient magnetic energy dissipation
- Efficient particle acceleration

MHD turbulence and particle diffusion

Scattering (// B)

e.g., Chandran 2000, Yan & Lazarian 2002, Xu & Lazarian 2018, Fornieri et al. 2021

- Isotropic Kolmogorov turbulence: $D_{iso} \propto E^{1/3}$
- Anisotropic Kolmogorov turbulence: D_{ani} ∝ E^{-3/2}
- D_{ani} >> D_{iso}

Diffusive mirroring (// B) Compressive

Highly suppressed diffusion e.g., Xu & Lazarian 2020

Superdiffusion (\perp B) Solenoidal

e.g., Lazarian & Yan 2014

MHD turbulence and stochastic acceleration

Second-order Fermi acceleration

Broadening and flattening of the injected particle spectrum in e.g., GRBs, PWNe

One and half Fermi acceleration

Brunetti & Lazarian 2016; see also e.g., Comisso et al. 2020; Lemoine 2021

Dependence of CR diffusion on M_A and M_s

Parallel mean free path vs. M_A

Parallel mean free path vs. M_s

Xu & Yan 2013

Hu et al. in prep

e.g., Cho & Lazarian 2002, 2003; Lim et al. 2020; Fornieri et al. 2021

Gamma-ray observations

46 Supernova Remnants | GAD-GAI-CRD

SNRs: theory vs. observation

Caprioli & Haggerty 2019

Why steepening? e.g.

DSA in a partially ionized medium?

Escaping CRs?

Loss of CR energy to turbulence and magnetic field?

Alfvenic drift?

e.g., Ptuskin & Zirakashvili 2005, Zirakashvili & Ptuskin 2008, Malkov et al. 2010, Ohira et al. 2010, Ohira & Ioka 2011, Drury 2011, Blasi et al. 2012, Caprioli & Spitkovsky 2014, Osipov et al. 2019, Bell et al. 2019, Malkov & Aharonian 2019, Caprioli et al. 2020.....

Diffusive shock acceleration (DSA)

Axford, Leer & Skadron 1977, Krymsky 1977, Bell 1978, Blandford & Ostriker 1978, Drury 1983, Jones & Ellison 1991.....

 $N(E) dE \propto E^{-2} dE$

 $E_{\rm max} \sim 10^{14} Z B_{\mu \rm G} \, {\rm eV}$ Lagage & Cesarsky 1983

X-ray image of Tycho's SNR

NASA/CXC/Rutgers/J.Warren & J.Hughes et al.

Magnetic field amplification up to ~300 μG

e.g., Bamba et al. 2005, Völk et al. 2005, Parizot et al. 2006, Morlino & Caprioli 2012, Ressler et al. 2014

Preshock instabilities

CR precursor

- Amplification of magnetic fields.
- Scattering and diffusion of particles.
- Acceleration of particles.

e.g., Parker 1958, Skilling 1975, Bell 1978, Dorfi 1991, Gary 1991, Jones & Kang 1992, Bierman 1997, Sturner et al. 1997, Schlickeiser 1999, Baring et al. 1999, Berezhko & Ellison 1999, Malkov & Drury 2001, Blasi 2002,2004, Bell 2004, Berezhko and Völk 2004, Lequeux 2005, Shalchi 2009, Ferrand 2010, Schure et al. 2012, Vink 2012, Caprioli & Spitkovsky 2014, Bai et al. 2015, Arbutina 2017, Pavlović 2018, Caprioli et al. 2018, Urošević et al. 2019, Zhang & Liu 2020.....

Non-linear DSA

Particles in MHD cells simulations of shock

van Marle, Casse & Marcowith 2018

Energy spectra of non-thermal particles

- Oscillations of the shock front and the magnetic field
- Particles initiate NRS instability
- Diffuse particle acceleration
- No clear distinction between parallel and perpendicular shocks

Small-scale turbulence dynamo

Turbulent stretching amplifies magnetic fields

Nonlinear turbulent dynamo

e.g. Cho et al. 2009; Beresnyak 2012; Ryu et al. 2008; Mckee et al. 2020; Xu & Lazarian 2017,2020; Gennaro et al. 2020

Growth of magnetic energy

$${\cal E}\sim {3\over 38}\epsilon t$$

 $\epsilon:$ turbulent energy cascading rate

Xu & Lazarian 2016

e.g., Kazantsev 1968, Kulsrud & Anderson 1992, Schekochihin et al. 2002, Brandenburg & Subramanian 2005

Preshock turbulent dynamo

Hennebelle & Falgarone 12;

e.g., Stutzki et al. 1998; Deshpande et al. 2000; Padoan et al. 2004; Scalo & Elmegreen 2004; Swift 2006; Lazarian 2009

Turbulence-amplified magnetic fields

- Density fluctuations + CR precursor
 vorticity.
- Vorticity & solenoidal turbulence stretch and amplify magnetic fields
- Independent of detailed plasma physics

e.g., Beresnyak et al. 2009, Drury & Downes 2012, Bruggen 2013, Obergaulinger et al. 2014, Walch & Naab 2015, Pais & Pfrommer 2020

Preshock turbulent dynamo

Initial density distribution

Magnetic field amplification depends on interstellar density contrast and size.

del Valle et al. 2016

Preshock dynamo at a low ionization fraction

- Weakly ionized upstream ISM
- Two-fluid (neutrals & ions) dynamo

Damped magnetic field fluctuations

Ν

Growing magnetic energy spectrum

Xu, Garain et al. 2019

Preshock magnetic fluctuations

e.g., Marcowith et al. 2020, Pohl et al. 2020; 12 Galactic Particle Acceleration, including PIC | CRI-CRD-MM

Postshock turbulent dynamo

- Upstream density fluctuations in the inhomogeneous ISM
- Generating vorticity and the solenoidal velocity component
- Stretching and amplifying magnetic fields

e.g., Dickel et al. 1989, Giacalone & Jokipii 2007, Ji et al. 2016, Winner et al. 2020

Postshock turbulent dynamo

Nonlinear turbulent dynamo

ϵ: turbulent energy cascading rate Xu & Lazarian 2016

Time evolution of magnetic field

Spatial distribution of magnetic field

Inoue et al. 2009; Xu & Lazarian 2017

Postshock turbulent dynamo

Nonlinear turbulent dynamo

ε: turbulent energy cascading rate Xu & Lazarian 2016

Uchiyama et al. 2007

Spatial distribution of magnetic field

Inoue et al. 2009; Xu & Lazarian 2017

Shock acceleration with turbulent magnetic fields

- << λ_{CR}

Turbulence affects

magnetic field amplification and shock acceleration

Particles cross the compression without scattering No clear distinction between parallel and perpendicular shocks

e.g., Jokipii & Giacalone 2007, Guo & Giacalone 2010, Lazarian & Yan 2014

PIC-MHD

van Marle et al. 2018

CR diffusion near SNRs interacting with MCs

CR diffusion can also explain steep gamma-ray spectra

e.g., Gabici, Aharonian, & Blasi 2007; Li & Chen 2012; Blasi, Amato & Serpico 2012; Evoli & Yan 2014

- What are the dominant sources of Galactic CRs, different sources for GeV and PeV?
- The relation between CRs and star formation?
- Does CR acceleration depend on the source & local environment (not considered in the standard DSA model)?
- Does CR diffusion depend on the local environment, near sources and near Earth, Galactic and extragalactic ISM?
- What is the CR injection spectrum at Galactic sources? Any modification due to the diffusion near the sources?

Class of SNRs and surrounding ISM environment: broadband γ -ray emission, multi-band observations + turbulence mapping

Acceleration: turbulent dynamo, turbulence/environment dependent dynamics over the space, time and energy scales in simulations

Diffusion: turbulence/environment dependent

Enrico Fermi's notebook of December 1948