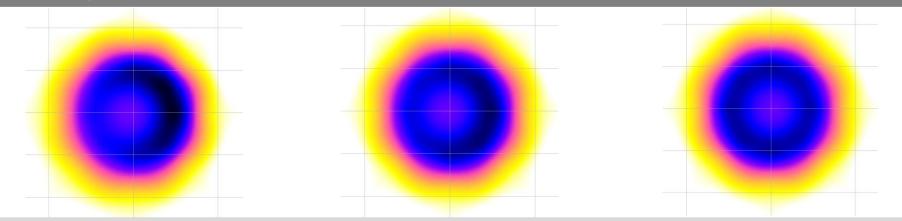


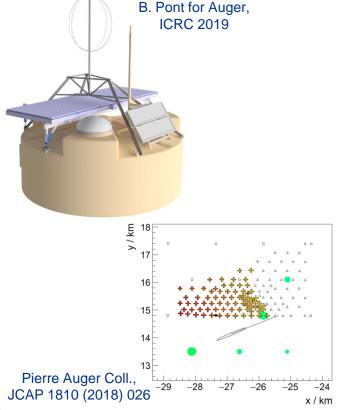
PoS(JCRC2021)209

Reconstructing inclined extensive air showers from radio measurements

Tim Huege (KIT & VUB), Felix Schlüter (KIT & UNSAM)



Inclined showers are of high interest

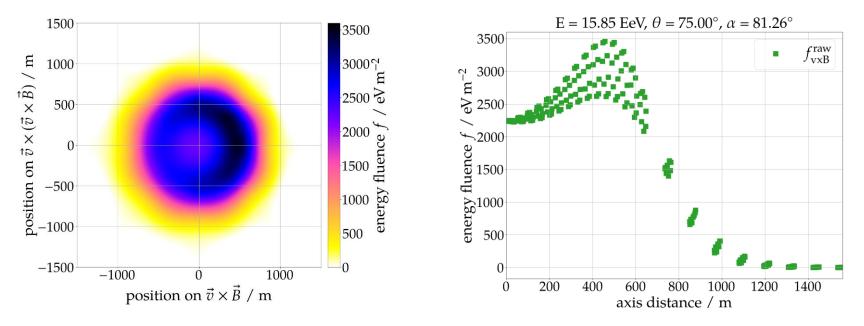


- inclined EAS have been long-predicted to possess large radio-emission footprints
- inclined EAS have been measured by AERA
- the Pierre Auger Collaboration is building the AugerPrime Radio Detector, 1660 antennas on 3,000 km², for showers with $\theta > 65^{\circ}$
- the GRAND collaboration plans up to 200,000 antennas on 200,000 km²
 - we need reliable reconstruction algorithms

Basis of this study

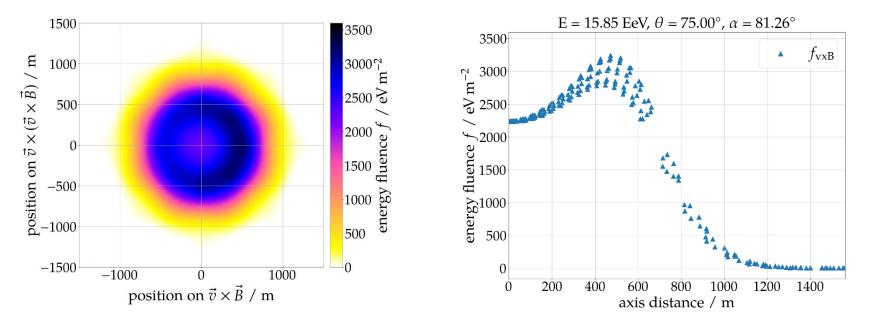
- CORSIKA/CoREAS v7.7 with QGSJETII-04 and UrQMD
- simulations filtered to the 30-80 MHz band
- energies from 10^{18.4} to 10^{20.2} eV
- zenith angles from 65° to 85°, excluding showers with α < 20°</p>
- optimized thinning at 5e-6 (derivation) and 1e-6 (performance check)
- atmospheres and magnetic field as at Pierre Auger Observatory

1: Convert to shower axis & apply core fit



allow for core shift due to atmospheric refraction (see <u>arXiv:2005.06775</u>)
significant asymmetries remain in shower plane

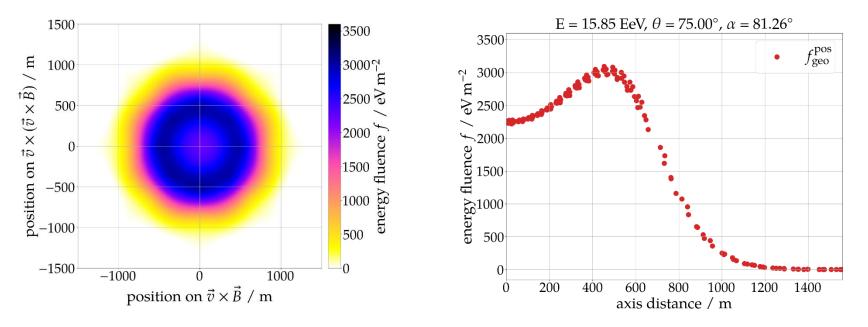
2: Apply geometrical early-late correction



geometrical early-late correction improves symmetry (arXiv:1908.07840)

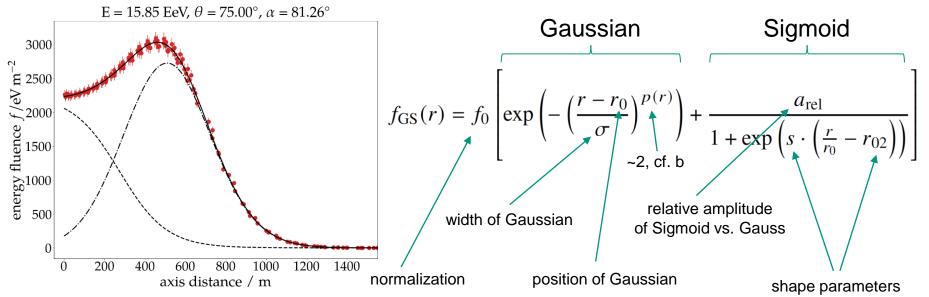
corrects axis distance and energy fluence for a given source distance

3: Calculate pure geomagnetic emission



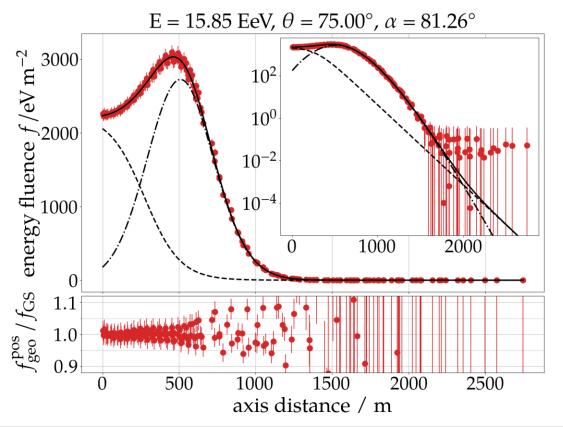
- deduct charge-excess via known polarisation properties
- pure geomagnetic emission component is rotationally symmetric

4: Fit a radially symmetric LDF



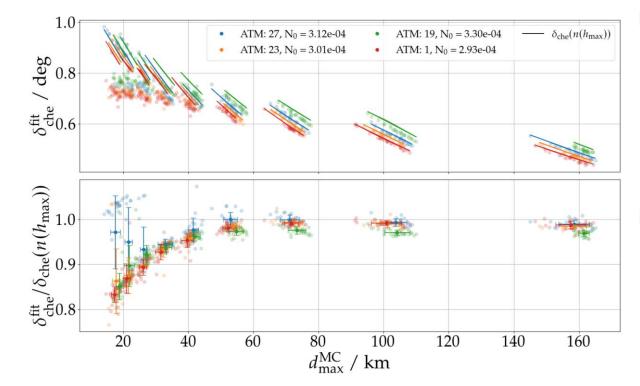
- function changed from ICRC2019 for a better fit at large distances
- 7 parameters plus 2 core coordinates, too many for practical application

4: Performance of Gauss-Sigmoid fit function



- very good fit over the complete distance range
- artifacts from particle thinning visible at largest distances, care taken that fit not biased by these

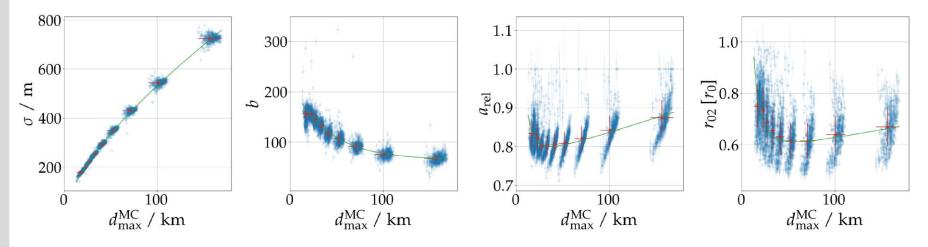
5: Reduce number of parameters



position of Gauss corresponds to Cherenkov radius calculated from refractive index at Xmax!

some deviations at lowest zenith angles

5: Recuce number of parameters



- shape parameter s is set to s = 5 (ensures Sigmoid dominant in center)
- other parameters can be parameterized as f(distance to X_{max})
- second-order influence of Xmax value, but decided not to parameterize
- out of 7 fit parameters, 6 successfully fixed or correlated to d_{max}

6: Parameterization of charge-excess fraction

so far determined from polarisation, but impractical in presence of noise
therefore parameterize charge-excess fraction

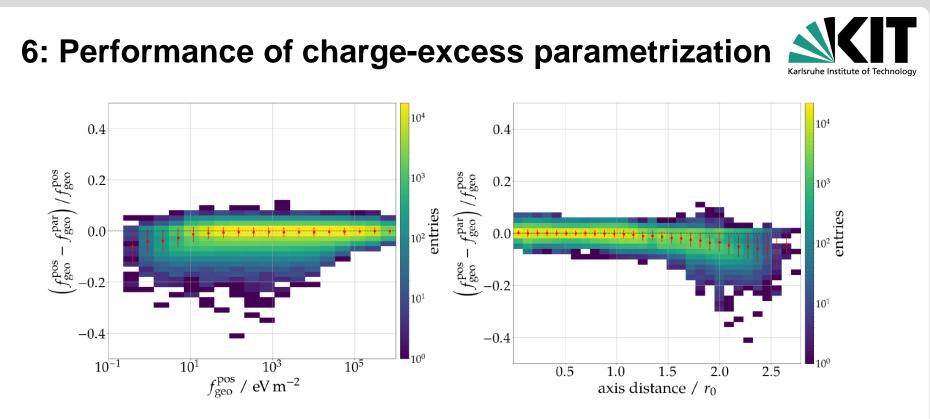
$$a_{ce} = \left[0.348 - \frac{d_{max}}{850.9 \,\text{km}} \right] \cdot \frac{r}{d_{max}} \cdot \exp\left[\frac{r}{622.3 \,\text{m}}\right] \cdot \left[\left(\frac{\rho_{max}}{0.428 \,\text{kg m}^{-3}}\right)^{3.32} - 0.0057 \right]$$

source dist. off-axis angle axis distance atmospheric density correction

with this, we can calculate geomagnetic energy fluence at any location by subtraction of charge-excess fluence from v x B measurement

$$f_{\text{geo}}^{\text{par}} = \frac{f_{\mathbf{v} \times \mathbf{B}}}{\left(1 + \frac{\cos(\phi)}{|\sin(\alpha)|} \cdot \sqrt{a(r, d_{\max}, \rho_{\max})}\right)^2}_{\text{Ast}}$$

cf. Glaser et al. JCAP 09 (2016) 024 and Astroparticle Physics 104 (2019) 64-77



agreement of charge-excess parameterization with direct calculation agrees on average within 2%

7: Final fit function

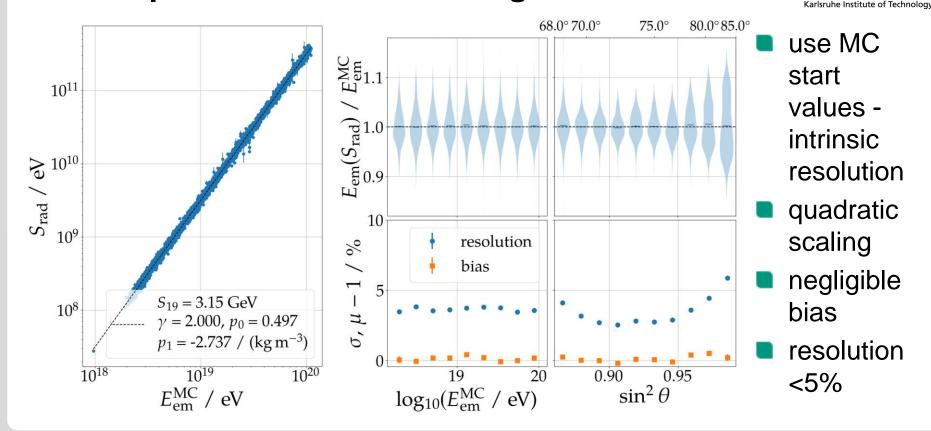
fit with 4 free parameters: geomagetic radiation energy, d_{max}, core x/y

$$f_{\text{geo}}(r, E_{\text{geo}}, d_{\text{max}}) = E_{\text{geo}} \frac{f_{\text{GS}}(r, d_{\text{max}})}{2\pi \int_0^{5r_0} f_{\text{GS}}(r, d_{\text{max}})r \,\mathrm{d}r}$$

- then apply geomagnetic angle and atmospheric density correction to get "corrected geomagnetic radiation energy" S_{geo}
- finally correlate S_{geo} with shower electromagnetic energy

$$S_{\text{geo}} = S_{19} \cdot \left(\frac{E_{\text{em}}}{10 \,\text{EeV}}\right)^{\gamma}$$

7: Test performance on 1.5 km grid simulations

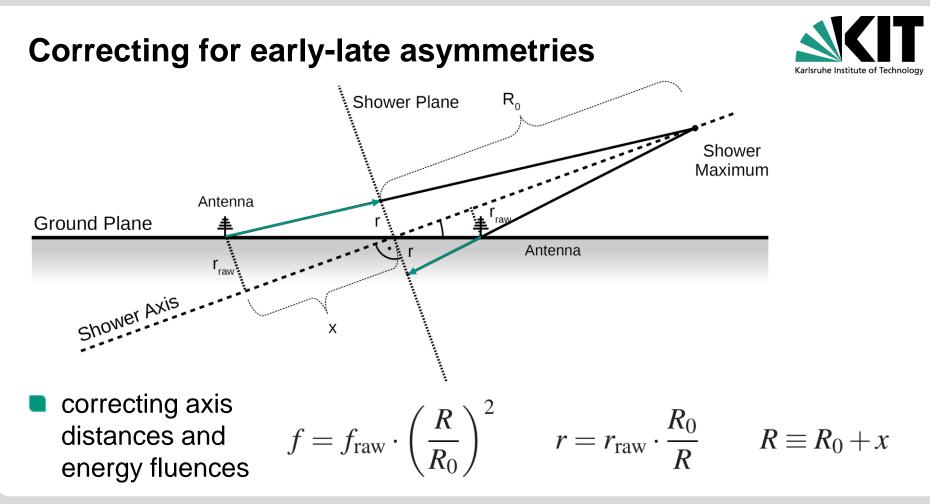


ICRC 2021, Berlin, Germany

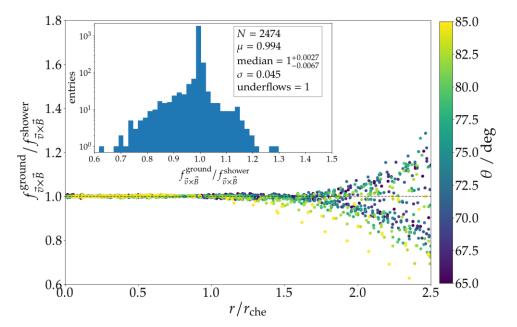
Conclusions

- we have developed a signal model and reconstruction for inclined EAS
- we fit the symmetric geomagnetic emission with a Gauss-sigmoid LDF
- the fit has two free parameters plus two core coordinates
- the intrinsic energy resolution is better than 5% on a 1.5 km grid
- can be used for AugerPrime Radio Detector, likely GRAND
- see it in action in talk by F. Schlüter, PoS(ICRC2021)262

Backup



Performance of early-late correction



most significant deviations are at large lateral distances and large zenith angles

Determining charge-excess fraction directly

$$f_{\text{geo}}^{\text{pos}} = \left(\sqrt{f_{\mathbf{v}\times\mathbf{B}}} - \frac{\cos(\phi)}{|\sin(\phi)|} \cdot \sqrt{f_{\mathbf{v}\times\mathbf{v}\times\mathbf{B}}}\right)^2$$
$$f_{\text{ce}}^{\text{pos}} = \frac{1}{\sin^2(\phi)} \cdot f_{\mathbf{v}\times\mathbf{v}\times\mathbf{B}}.$$

for a given observation position, the charge-excess fraction can be determined directly via the known polarisation characteristics of the geomagnetic and charge-excess contributions, cf. Glaser et al., Astroparticle Physics 104 (2019) 64-77

Parameter correlations

$$r_0 = \tan(\delta_{\text{che}}) \cdot d_{\text{max}}, \qquad \delta_{\text{che}} = \cos^{-1}\left(\frac{1}{n(h(d_{\text{max}}))}\right)$$
$$\sigma = \left(0.132 \cdot \left(\frac{d_{\text{max}} - 5 \text{ km}}{\text{m}}\right)^{0.714} + 56.3\right) \text{ m}$$

$$p(r) = \begin{cases} 2 & r \le r_0 \\ 2 \cdot (r_0/r)^{b/1000} & r > r_0 \end{cases}, \ b = 154.9 \cdot \exp\left(-\frac{d_{\max}}{40.0 \text{ km}}\right) + 64.9,$$
$$a_{\text{rel}} = 0.757 + \frac{d_{\max}}{1301.4 \text{ km}} + \frac{19.8 \text{ km}^2}{d_{\max}^2},$$
$$r_{02} = 0.552 + \frac{d_{\max}}{1454.2 \text{ km}} + \frac{66.2 \text{ km}^2}{d_{\max}^2}.$$