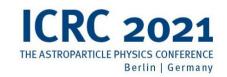
When heavy ions meet cosmic rays : potential impact of QGP formation on the muon puzzle


Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Astrophysicalphysik, Karlsruhe, Germany

With S.Baur, H.Dembinski, M. Perlin, R.Ulrich and K.Werner

37th ICRC, Berlin July the 14th, 2021

Outline

Core-Corona model

New input from LHC crucial to reproduce EAS data consistently: collective effects in light system may bring a solution for the muon puzzle.

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

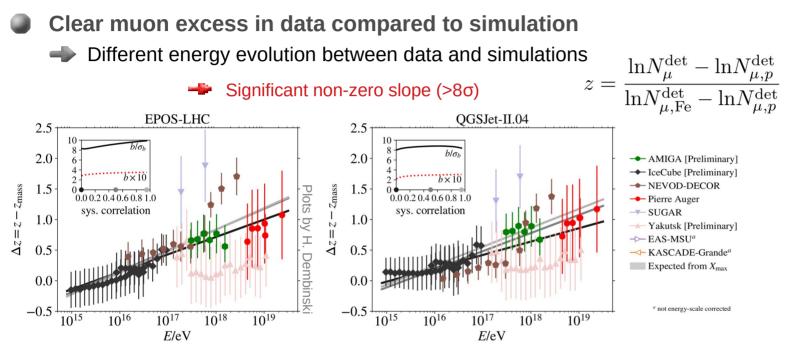
T. Pierog, KIT - 2/12

Ultra High Energy Cosmic Ray Composition

With muons current CR data are impossible to interpret

- Very large uncertainties in model predictions
- Mass from muon data incompatible with mass from X_{max}

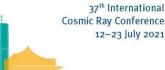
Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660


H. Dembinski UHECR 2018 (WHISP working group)

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

Core-Corona

Global Behavior



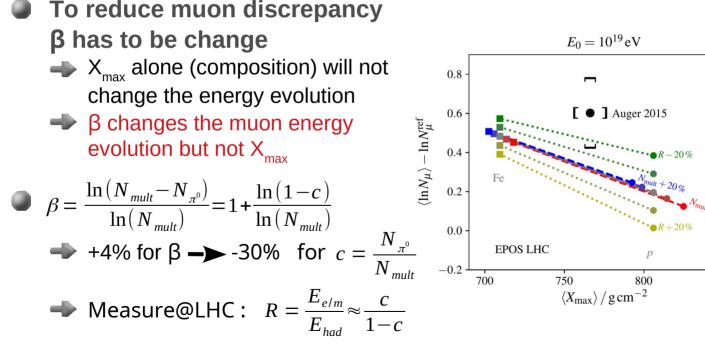
Different energy or mass scale cannot change the slope

Different property of hadronic interactions at least above 10¹⁶ eV

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

ICRC – July 2021

T. Pierog, KIT - 4/12

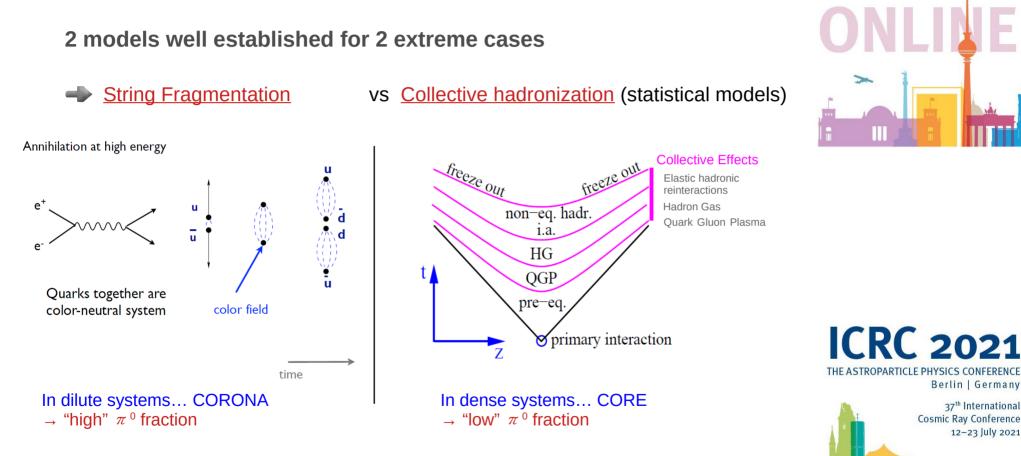

Core-Corona

850

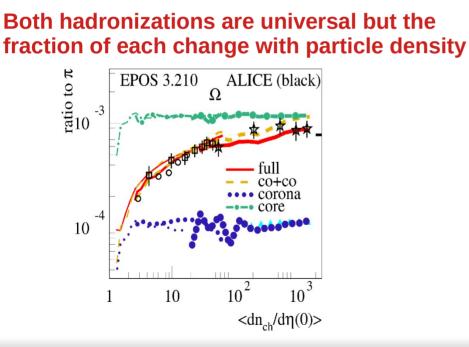
Constraints from Correlated Change

One needs to change energy dependence of muon production by ~+4%

$$N_{\mu} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

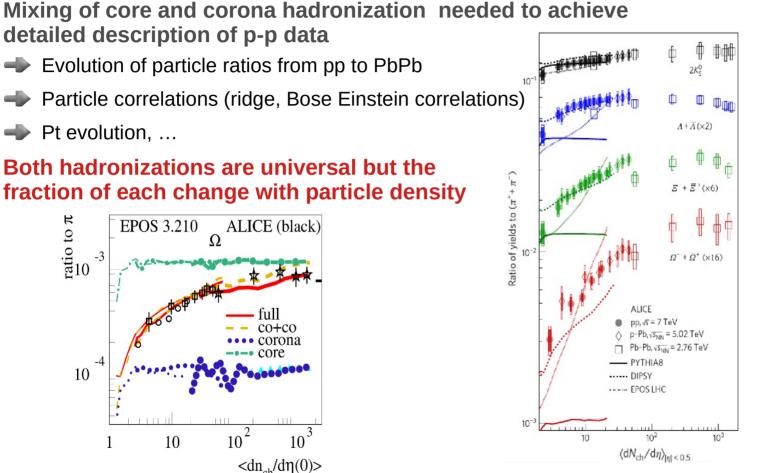


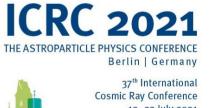
ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany


Core-Corona

Hadronization Models

What to do in between ? For proton-proton, hadron-Air, …


Core-Corona @ LHC


detailed description of p-p data

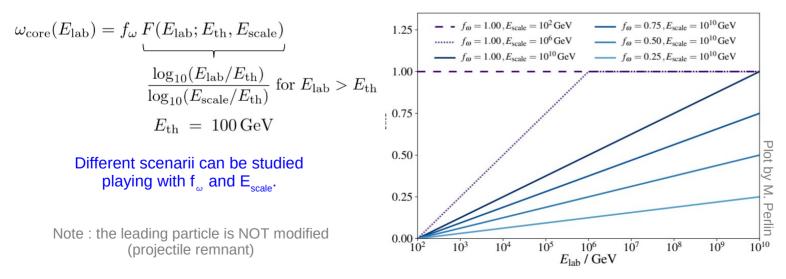
Pt evolution, ...

Evolution of particle ratios from pp to PbPb

12-23 July 2021

T. Pierog, KIT - 7/12

ICRC – July 2021


Core-Corona

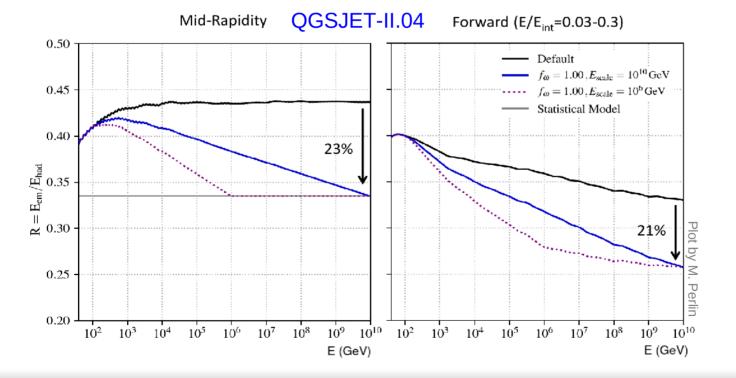
Core-Corona appoach and EAS

To test if a QGP like hadronization can account for the missing muon production in EAS simulations a core-corona approach can be artificially apply to any model

- Particle ratios from statistical model are known (tuned to PbPb) and fixed : core
- Initial particle ratios given by individual hadronic interaction models : corona

Using CONEX, EAS can be simulated mixing corona hadronization with an arbitrary fraction ω_{core} of core hadronization: $N_i = \omega_{\text{core}} N_i^{\text{core}} + (1 - \omega_{\text{core}}) N_i^{\text{corona}}$

ICRC – July 2021


Ref: <https://arxiv.org/abs/1902.09265>

T. Pierog, KIT - 8/12

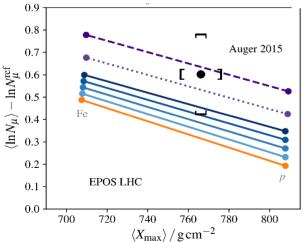
Core-Corona

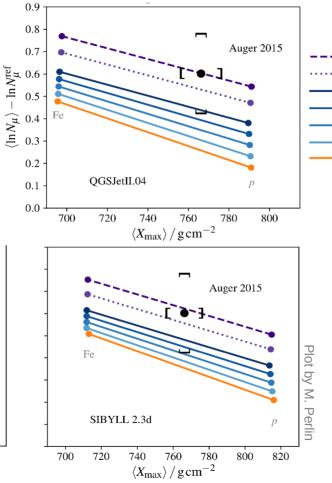
Evolution of hadronization from core to corona

The relative fraction of π^{0} depends on the hadronization scheme Change of ω_{core} with energy change $c = \frac{N_{\pi^{0}}}{N_{mult}}$ or $R(\eta) = \frac{\langle dE_{em}/d\eta \rangle}{\langle dE_{had}/d\eta \rangle}$ which define the muon production in air showers.

THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

Cosmic Ray Conference 12–23 July 2021


Core-Corona

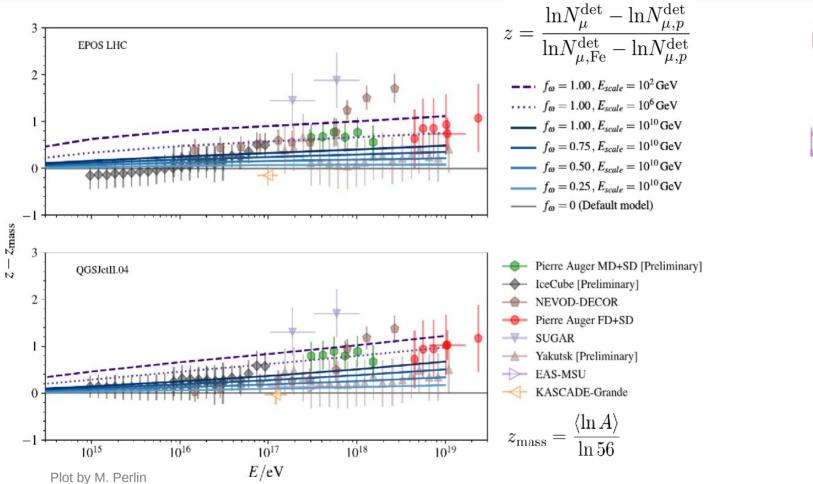

Results for X_{max}-N_{mu} correlation

- ➡ No change in X_{max}
- Needs a large part of core hadronization at maximum energy to reach Auger point

 Sibyll with higher mass (deep X_{max}) need less

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

> 37th International Cosmic Ray Conference 12–23 July 2021


T. Pierog, KIT - 10/12

ICRC – July 2021

Ref: <https://arxiv.org/abs/1902.09265>

Core-Corona

Results for z-scale

ICRC 2021

THE ASTROPARTICLE PHYSICS CONFERENCE

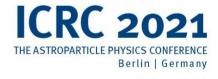
Berlin | Germany 37th International Cosmic Ray Conference 12–23 July 2021

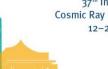
ICRC – July 2021

Ref: <https://arxiv.org/abs/1902.09265>

T. Pierog, KIT - 11/12

Summary

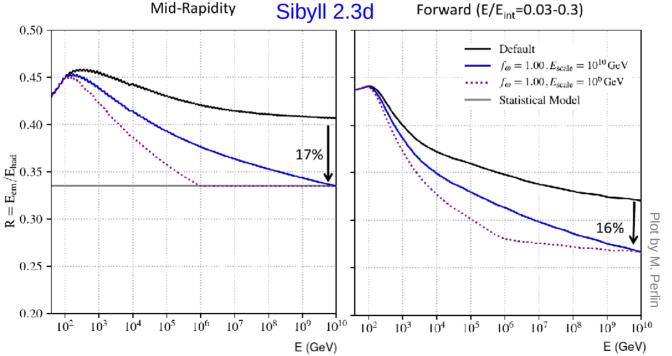

New input from LHC crucial to reproduce EAS data consistently: collective effects in light system may bring a solution for the muon puzzle.


- WHISP working group clearly established a muon production deficit in air shower simulations.
 - Exact scale not known (dependent on energy and mass)
- Most "natural" explanation given by a change in pion charge ratio.
 - Other possibilities limited by X_{max} (multiplicity, inelasticity)
- **LHC** results show a possible mechanism to change π^{0} fraction.
 - Different type of hadronization (string like or satistical decay)
 - Core-corona model

ICRC – July 2021

- More data are necessary to constrain the model in relevant kinematic space.
 - Forward measurement (LHCb or more forward)
 - ➡ Light ion beam (p-O, O-O)

Evolution of hadronization from core to corona


The relative fraction of π^{0} depends on the hadronization scheme Change of ω_{core} with energy change $c = \frac{N_{\pi^0}}{N_{\text{mult}}}$ or $R(\eta) = \frac{\langle dE_{\text{em}}/d\eta \rangle}{\langle dE_{\text{had}}/d\eta \rangle}$ which define the muon production in air showers. Mid-Rapidity Forward (E/E_{int}=0.03-0.3) **EPOS LHC** 0.50 Default $f_{\omega} = 1.00, E_{\text{scale}} = 10^{10} \,\text{GeV}$ 0.45 $f_{\omega} = 1.00, E_{\text{scale}} = 10^{6} \,\text{GeV}$ Statistical Model 0.40 17% $E_{\text{em}}/E_{\text{had}}$ 16% *⊷* 0.30 Plot by M. Perlin 0.25 0.20109 10^{2} 10^{2} 105 10^{6} 10^{7} 10^{8} 10^{10} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{3} 10^{4} 10^{10} E (GeV) E (GeV)

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

Evolution of hadronization from core to corona

The relative fraction of π^{0} depends on the hadronization scheme Change of ω_{core} with energy change $c = \frac{N_{\pi^{0}}}{N_{mult}}$ or $R(\eta) = \frac{\langle dE_{em}/d\eta \rangle}{\langle dE_{had}/d\eta \rangle}$ which define the muon production in air showers.

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany