Escape-limited maximum energy at perpendicular shocks in the interstellar magnetic field

<u>Shoma Kamijima</u>, Yutaka Ohira The University of Tokyo

Cosmic Rays and Cosmic Ray Escape

cosmic rays(CRs) up to 10^{15.5} eV

We have not understood

What types of SNRs can accelerate CRs to PeV?

Which shock accelerates Galactic CRs,

parallel shocks or **perpendicular shocks**?

cosmic ray escape

The CR escape process is important to determine the maximum energy and the spectral index of the CR energy spectrum. (Ptuskin & Zirakashvili 2003, 2005, Ohira, Murase, Yamazaki 2010, Ohira & Ioka 2011)

Previous studies assume the diffusion approximation.

The gyration is crucial to realize the rapid acceleration in the perp. shock. (Takamoto & Kirk 2015, Kamijima et al.2020)

We investigate the escape process and the escape-limited maximum energy at the perp. shock without the diffusion approximation.

Our Model

System: uniform B field + Spherical shock (assumption: turbulent B field in the downstream region)

Escape-limited maximum energy : $E_{max,esc}$ (acceleration time, t_{acc} , = escape time , t_{esc})

- Perpendicular shock acceleration model (Kamijima, Ohira, Yamazaki 2020)
 → acceleration time t_{acc}
- the size of acceleration region: R_{acc}
- particle motion in the acceleration region
 - \rightarrow escape time $t_{\rm esc}$

Perpendicular Shock Acceleration Model

 p/p_0

Particle Motion in Acceleration Region

Particles are **not scattered in the upstream region**, and are **scattered in the downstream region**.

The particle motion for longer time scale than the one cycle time is regarded as the diffusion.

From the relation between the diffusion length and time , $z^2 \sim 2\kappa_{zz}t$, the escape time is

$$t_{\rm esc} = \frac{R_{\rm acc}^2}{2\kappa_{\rm zz}}$$

size of the acceleration region: R_{acc} diffusion coefficient along B_1 : κ_{zz}

6

Particle Motion in Acceleration Region

<u>diffusion coefficient along B_1 </u>: κ_{ZZ}

$$\kappa_{zz} = \frac{(\Delta z_1)^2 + (\Delta z_2)^2}{2(\Delta t_1 + \Delta t_2)}$$

<u>mean residence time</u> : Δt_1 , Δt_2

 $\Delta t_1 = \pi \Omega_{g,1}^{-1}$ $\Delta t_2 = \frac{4\kappa_2}{u_2 v} = \frac{4r}{3} \left(\frac{u_{sh}}{v}\right)^{-1} \left(\frac{B_2}{B_1}\right)^{-1} \Omega_{g,1}^{-1}$ $\kappa_2 = \frac{1}{3} r_{g,2} v = \frac{1}{3} \left(\frac{B_2}{B_1}\right)^{-1} r_{g,1} v$

mean displacement during the residence time: Δz_1 , Δz_2

$$\Delta z_{1} = \sqrt{\langle v_{z}^{2} \rangle} \Delta t_{1} = \frac{v}{2} \Delta t_{1} = \frac{\pi}{2} r_{g,1}$$

$$\Delta z_{2} = \sqrt{2\kappa_{2}\Delta t_{2}} = \frac{\sqrt{8r}}{3} \left(\frac{u_{sh}}{v}\right)^{-1/2} \left(\frac{B_{2}}{B_{1}}\right)^{-1} r_{g,1}$$

$$(r_{g,1} = v\Omega_{g,1}^{-1})^{-1} = v\Omega_{g,1}^{-1}$$

Z

Size of Acceleration Region

Here, we consider <u>accelerating particles</u>.

In the **subluminal shock**, particles can **escape to the far upstream region**.

We consider the escape probability that particles escape to the far upstream region during the one cycle time of DSA , $P_{\rm esc}$.

The escape probability at the point of the *i*-th shock crossing, $|z_i|$, is

$$P_{\rm esc}\left(\frac{|z_i|}{R_{\rm sh}}, \frac{u_{\rm sh}}{v}\right)$$

The size of the acceleration region is given by

$$P_{\text{acc}} = \prod_{i=1}^{\nu/u_{\text{sh}}} \left[1 - P_{\text{esc}} \left(\frac{|z_i|}{R_{\text{sh}}}, \frac{u_{\text{sh}}}{\nu} \right) \right] \approx 0$$

The return probability at $z = |z_i|$

Size of Acceleration Region

$$P_{\rm acc} = \prod_{i=1}^{\nu/u_{\rm sh}} \left[1 - P_{\rm esc} \left(\frac{|z_i|}{R_{\rm sh}}, \frac{u_{\rm sh}}{\nu} \right) \right] \approx 0$$

We need the complex calculation to get $|z_{v/u_{sh}}| = R_{acc}$. To simplify, we assume that the particles are $z = R_{acc}$ during the acceleration.

We numerically investigate P_{esc} for several $|z|/R_{\text{sh}}$ and u_{sh}/v , and estimate $|z| = R_{\text{acc}}$ given by the condition $P_{\text{esc}}\left(\frac{|z|}{R_{\text{sh}}}, \frac{u_{\text{sh}}}{v}\right) = \frac{u_{\text{sh}}}{v}$.

Size of Acceleration Region

Size of Acceleration Region

Simulation Setup

 $\frac{3}{4}u_{\rm sh}$

 $R_{\rm sh}$

- test particle simulation (up) + Monte-Carlo (down)
- Time evolution of shock: Mckee & Truelove 1995 $(E_{\rm SN} = 10^{51} \text{ erg}, M_{\rm ej} = 1 M_{\odot}, \rho = 1.67 \times 10^{-24} \text{ g cm}^{-3})$
- downstream flow velocity (only radial component)
- Downstream particles are scattered in the local downstream fluid rest frame.
- downstream B field $\frac{B_2^2 u_2}{8\pi} = \varepsilon_B \times \frac{1}{2} \rho u_1^3 \quad \varepsilon_B = 0.01$
- impulsive injection at the initial time (isotropic velocity distribution) ($E_{inj} = 1 \text{ TeV}@t_{inj} = 40, 100, 200, 660, 2000, 6600 \text{ yr}$ $E_{inj} = 100 \text{ GeV}@t_{inj} = 20000 \text{ yr}$)
- upstream B field B_1 (2 types)
 - > only uniform B field, \vec{B}_0 ($B_0 = 3\mu G$)
 - > uniform B field, \vec{B}_0 + fluctuation $\delta \vec{B}$

isotropic Kolmogorov spectrum, $\sqrt{\Sigma_n \delta B^2(k_n)}/B_0 = 1$

injection scale: $L_{inj} = 100 \text{ pc}$

• injection position: equator (for $\vec{B}_1 = \vec{B}_0$), whole sphere ($\vec{B}_1 = \vec{B}_0 + \delta \vec{B}$)

14

Summary & Future Work

Summary

- We investigated the escape process from the perpendicular shock region of SNRs in the ISM magnetic field.
- Particles injected to the equatorial plane escape from acceleration region while diffusing along the upstream magnetic field line.
- the size of the acceleration region is larger than the superluminal shock region because of the finite pitch angle of particles.
- The escape-limited maximum energy is much smaller than PeV.

 Type Ia SNRs in the ISM cannot accelerate CRs to PeV
 - without the upstream magnetic amplification.

➢ <u>Future Work</u>

- We will investigate the case of core collapse SNRs in the CSM.
 - → The upstream magnetic field structure is the shape of the Parker spiral structure.
 - \rightarrow Wide perpendicular shock region?