
Outline Traditional models The new model Résumé
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Motivation

A guiding question for contemporary research activities:

Can a combination of cur-
rent models of the kinetic
transport of cosmic rays
with magnetohydrodynamic
(MHD) models of the
solar wind and its turbu-
lence be used to explain
three-dimensional (3D)
multi-point spacecraft data?

Example: Solar wind and energetic electron

data at SOHO (black) and Ulysses (red)

SW

e−

Wiengarten et al. [2014]

−→ Task: Construction of suitable combination of models
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Motivation

Combination of MHD solar wind and kinetic cosmic ray transport
models has long tradition

(e.g., le Roux & Fichtner [1997], Guo & Florinski [2014],

Kopp et al. [2017])

Contemporary activities include explicit modelling of solar wind
turbulence and its influence on cosmic ray transport processes

(e.g., Engelbrecht & Burger [2013], Wiengarten et al. [2016],

Moloto et al. [2018])

Particularly, a physics-based modelling of (the
reduction of) drifts in a structured and time-
dependent solar wind that is fully consistent with
observations is still missing

(e.g., Moloto et al. [2018], Zhao et al. [2018],

Kopp et al. [2021]) qA > 0
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Outline Traditional models The new model Résumé

Traditional models of drift reduction

Heliospheric particle drifts are described by

〈vd〉 = ∇×
(
κA

B

B

)
; κA = qAκA,0

Pβ

3B

(P/P0)2

1 + (P/P0)2
; κA,0 ∈ [0, 1]

Reduction Method I:

Phenomenological coupling to
(current sheet) tilt angle α:

κA,0 =
[
cos
( π

150◦
α
)] α

c1

Ferreira & Potgieter [2003],

Raath [2019]

Reduction Method II:

Direct coupling
to turbulence δB:

κA,0 =

(
1 +

λ⊥
2

RL
2

δB2

B2

)−1

Engelbrecht et al. [2017],

Moloto et al. [2018]

Problems: parametrization with α too simple; δB/B exhibits

only weak, if any, dependence on solar cycle
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A new model models of drift reduction

Heliospheric particle drifts are described by

〈vd〉 = ∇×
(
κA

B

B

)
; κA = qAκA,0

Pβ

3B

(P/P0)2

1 + (P/P0)2
; κA,0 ∈ [0, 1]

New Reduction Method:

Coupling to topology of
magnetic field maps (see figure):

A→ σt =̂ ‘topological’ sign

Kopp et al. [2021]

• A = ±1 discrete

• σt ∈ [−1, 1] continuous

Advantage: allows for localized regions with ordered drift motion

and is using the MHD boundary conditions
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Computation of the topological sign

Step 0: Computation of magnetic field maps from GONG maps
(Wiengarten et al. [2014]: potential field assumption)

−→

Step 1: New determination of tilt angle(s) from the magnetic
field maps, i.e. latitudes of heliospheric current sheet

→ new tilt angles can be greater than Wilcox tilt angles
which are limited to ±75 deg

Step 2: Computation of topological sign σt ∈ [−1,+1] that
takes into account localized regions of opposite field polarities
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Step 1: New vs. Wilcox tilt angles

- new angles: gray area, thick lines

- WSO angles: thin lines

- colored bars: extent of region with multiple HCS crossings
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Step 2: Topological sign

Distinguish sign of ‘inner’ and ’outer’ regions (Kopp et al. [2021]):

σt = 〈σt,out(ϕ) + w(ϕ)σt,inn(ϕ)〉ϕ ; w(ϕ) = (ϑ̃max(ϕ)− ϑ̃min(ϕ))/180◦

with

σt,out(ϕ) =
1

2

(
qr(ϑ̃min(ϕ)− 1, ϕ)− qr(ϑ̃max(ϕ) + 1, ϕ)

)
and

qr(ϑ, ϕ) =
Br(ϑ, ϕ)

|Br(ϑ, ϕ)|

(σt,inn similar, see ICRC paper)
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Step 2: Topological sign vs. Carrington Rotation

- new tilt angles with topological sign

- box extensions indicate mirrored larger value of other hemisphere

- sign of the cycle changes between CRs 2139 and 2140
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Résumé

The topological sign

generalizes previous approaches, which were limited to A = ±1,
to σt ∈ [−1,+1]

takes into account the topology of magnetic field maps at the
heliobase and is, thus, explicitly physics-based (as opposed to
heuristic)

enables a consistent coupling of kinetic transport and MHD
models in the sense that they are employing the same boundary
conditions

approach may be supplemented by additional effects due to, e.g.,
turbulence


