A New GeV-TeV Particle Component and the Barrier of Cosmic-ray Sea in the CMZ Region

Xiaoyuan Huang

In collaboration with Qian Yuan and Yi-Zhong Fan

arXiv: 2012.05524

The sea of galactic cosmic rays

Selig et al. 2015

Image: GALEX, JPL-Caltech, NASA; Drawing: APS/Alan Stonebraker

Aharonian et al. 2020

Enhanced cosmic/gamma rays around accelerators

Galactic center, a possible PeVatron

HESS Collaboration et al. 2016

The best fit of a $1/r^{\alpha}$ profile to the data is found for $\alpha=1.10\pm0.12$ (1 σ). The 1/r radial profile is clearly preferred for the HESS data.

A spectrum following a power law extending with a photon index of ~ 2.3 to energies up to tens of TeV, without a cut-off or a break.

Galactic center at GeV

Yang et al. 2015

Gaggero et al. 2017

400 $w_{\rm CR}(0.1 < E_{\rm CR} < 3 \text{ TeV}) [10^{-3} \times eV/\text{cm}^3]$ 0.4pacman 9 $w_{CR}(E_{CR} > 10 \text{ TeV}) [10^{-3} \times \text{eV/cm}^3]$ 0.0 300 20 $^{-1}$ • Fermi 200 ▲ H.E.S.S. 10 pacmar [W_{CR}]^{≥10 TeV} 5 100 6 [W_{CR}]^{0.1÷3TeV} 5 2 250 50 100 150 200 N Projected radial distance from SgrA* [pc]

The γ-ray spectrum in the region can be well-fitted using a local cosmic-ray spectrum. Contribution from the new component should be sub-dominate. An energy independent shape of the CR density profile. It is clear that both data sets are consistent with being constant for r ≥ 100 pc

Another exotic component at the GC

Re-investigating the GC region

Data > 8 GeV

Two types of gamma-ray emission

For all these templates to model γ -ray from neutral pion decay, parameters derived from the CMZ region would predict a harder spectrum and a lower flux of γ -ray.

The X_{co} factor in the center region is smaller than that used in the GALPROP for the CO-to-H₂ conversion, making less targets for the cosmic-ray interaction.

The cosmic-ray density in the center region is lower than the density of the cosmic-ray sea in the off-center region.

Two types of cosmic-ray component

Cosmic-ray energy density in the CMZ region would decline with distance to the GC. (A new component) Cosmic-ray energy density in the off-CMZ region would almost be a constant. (Cosmic-ray sea)

The GeV-TeV counterpart of the VHE CR component

We find the Fermi-LAT data would indicate the index of the cosmic-ray profile as $1.35^{+0.06}_{-0.09}$, which is consistent with that derived at very-high energy, $\alpha = 1.2 \pm 0.3$ in MAGIC Collaboration et al. (2020) and $\alpha = 1.1 \pm 0.12$ in HESS Collaboration et al. (2016).

The GeV-TeV counterpart of the VHE CR component

A power-law spectrum could give a good prediction over 4 orders of magnitude of energy.

The effect of the GCE

Aharonian et al. 2020

CRs propagation in the CMZ

GALACTIC COSMIC RAYS SOLAR WIND SUN SUN SUN SUN SOLAR COSMIC RAYS

Credit: Sarah. A. Brands

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 V_0 S - r^2 D_0 \frac{\partial S}{\partial r} \right) = \frac{q V_0 S}{r}, \qquad V_0 \sim 500 \text{ km s}^{-1}$$
$$D_0 = 3 \times 10^{28} \text{ cm}^2 \text{ s}^{-1}$$

CRs from outside of the CMZ

scaling relation of ~ $r^{0.8}$ for the CR density distribution

CRs from an central source

an approximate $r^{-1.5}$ profile of the CR density

Summary

- We identify a counterpart of the VHE accelerator in GeV-TeV energy range using the Fermi-LAT data
- There is a barrier that can effectively suppress the penetration of the particles from the cosmic-ray sea to the central molecular zone.

Thank you!