

# LHAASO and Highlights of Science results

Zhen Cao **for LHAASO Coll.** Institute of High Energy Physics, Beijing

ICRC 2021, On-line, July, 2021





## LHAASO Collaboration

#### Scientists: 275

Zhen Cao<sup>1,2,3</sup>, F. A. Aharonian<sup>4,5</sup>, Q. An<sup>6,7</sup>, Axikegu<sup>8</sup>, L. X. Bai<sup>9</sup>, Y. X. Bai<sup>1,2</sup>, Y. W. Bao<sup>10</sup>, D. Bastieri<sup>11</sup>, X. J. Bi<sup>1,2,3</sup>, Y. J. Bi<sup>1,2</sup>, H. Cai<sup>12</sup>, J. T. Cai<sup>11</sup>, Zhe Cao<sup>6,7</sup>, J. Chang<sup>13</sup>, J. F. Chang<sup>6,1,2</sup>, X. C. Chang<sup>12</sup>, B. M. Chen<sup>14</sup>, J. Chen<sup>9</sup>, L. Chen<sup>12,3</sup>, Liang Chen<sup>15</sup>, Long Chen<sup>8</sup>, M. J. Chen<sup>12</sup>, M. L. Chen<sup>6,1,2</sup>, Q. H. Chen<sup>8</sup>, S. H. Chen<sup>1,2,3</sup>, S. Z. Chen<sup>1,2,1</sup>, T. L. Chen<sup>16</sup>, X. L. Chen<sup>1,2,3</sup>, Y. Chen<sup>10</sup>, N. Cheng<sup>1,2</sup>, Y. D. Cheng<sup>1,2</sup>, S. W. Cui<sup>14</sup>, X. H. Cui<sup>17</sup>, Y. D. Cui<sup>18</sup>, B. Z. Dai<sup>19</sup>, H. L. Dai<sup>1,2,13</sup>, Z. G. Dai<sup>10</sup>, Danzengluobu<sup>16</sup>, D. della Volpe<sup>20</sup>, B. D'Ettorre Piazzoli<sup>21</sup>, X. J. Dong<sup>12</sup>, J. H. Fan<sup>11</sup>, Y. Z. Fan<sup>13</sup>, Z. X. Fan<sup>12</sup>, J. Fang<sup>19</sup>, K. Fang<sup>12</sup>, C. F. Feng<sup>22</sup>, L. Feng<sup>13</sup>, S. H. Feng<sup>12</sup>, Y. L. Feng<sup>13</sup>, B. Gao<sup>12</sup>, C. D. Gao<sup>22</sup>, Q. Gao<sup>16</sup>, W. Gao<sup>22</sup>, M. M. Ge<sup>19</sup>, L. S. Geng<sup>12</sup>, G. H. Gong<sup>23</sup>, Q. B. Gou<sup>12</sup>, M. H. Gu<sup>6,12</sup>, J. G. Guo<sup>1,2,3</sup>, X. L. Guo<sup>8</sup>, Y. Q. Guo<sup>1,2</sup>, Y. Y. Guo<sup>1,2,3,13</sup>, Y. A. Han<sup>24</sup>, H. H. He<sup>1,2,3</sup>, H. N. He<sup>13</sup>, J. C. He<sup>1,2,3</sup>, S. L. He<sup>11</sup>, X. B. He<sup>18</sup>, Y. He<sup>8</sup>, M. Heller<sup>20</sup>, Y. K. Hor<sup>18</sup>, C. Hou<sup>1,2</sup>, X. Hou<sup>25</sup>, H. B. Hu<sup>1,2,3</sup>, S. Hu<sup>9</sup>, S. C. Hu<sup>1,2,3</sup>, X. J. Hu<sup>23</sup>, D. H. Huang<sup>8</sup>, Q. L. Huang<sup>12</sup>, W. H. Huang<sup>22</sup>, X. T. Huang<sup>22</sup>, Z. C. Huang<sup>8</sup>, F. Ji<sup>1,2</sup>, X. L. Ji<sup>6,1,2</sup>, H. Y. Jia<sup>8</sup>, K. Jiang<sup>6,7</sup>, Z. J. Jiang<sup>19</sup>, C. Jin<sup>1,2,3</sup>, D. Kuleshov<sup>26</sup>, K. Levochkin<sup>26</sup>, B. B. Li<sup>14</sup>, Cong Li<sup>1,2</sup>, Cheng Li<sup>6,7</sup>, F. Li<sup>6,1,2</sup>, H. B. Li<sup>1,2</sup>, H. C. Li<sup>1,2</sup>, H. Y. Li<sup>7,13</sup>, J. Li<sup>6,1,2</sup>, K. Li<sup>1,2</sup>, W. L. Li<sup>22</sup>, X. Li<sup>6,7</sup>, Xin Li<sup>8</sup>, X. R. Li<sup>1,2</sup>, Y. Li<sup>9</sup>, Y. Z. Li<sup>1,2,3</sup>, Zhe Li<sup>1,2</sup>, Zhuo Li<sup>27</sup>, E. W. Liang<sup>28</sup>, Y. F. Liang<sup>28</sup>, S. J. Lin<sup>18</sup>, B. Liu<sup>7</sup>, C. Liu<sup>12</sup>, D. Liu<sup>22</sup>, H. Liu<sup>8</sup>, H. D. Liu<sup>24</sup>, J. Liu<sup>12</sup>, J. L. Liu<sup>29,30</sup>, J. S. Liu<sup>18</sup>, J. Y. Liu<sup>12</sup>, M. Y. Liu<sup>16</sup>, R. Y. Liu<sup>10</sup>, S. M. Liu<sup>13</sup>, W. Liu<sup>12</sup>, Y. N. Liu<sup>23</sup>, Z. X. Liu<sup>9</sup>, W. J. Long<sup>8</sup>, R. Lu<sup>19</sup>, H. K. Lv<sup>1,2</sup>, B. Q. Ma<sup>27</sup>, L. L. Ma<sup>1,2</sup>, X. H. Ma<sup>1,2</sup>, J. R. Mao<sup>25</sup>, A. Masood<sup>8</sup>, W. Mitthumsiri<sup>31</sup>, T. Montaruli<sup>20</sup>, Y. C. Nan<sup>22</sup>, B. Y. Pang<sup>8</sup>, P. Pattarakijwanich<sup>31</sup>, Z. Y. Pei<sup>11</sup>, M. Y. Qi<sup>1,2</sup>, D. Ruffolo<sup>31</sup>, V. Rulev<sup>26</sup>, A. Sáiz<sup>31</sup>, L. Shao<sup>14</sup>, O. Shchegolev<sup>26,32</sup>, X. D. Sheng<sup>12</sup>, J. R. Shi<sup>1,2</sup>, H. C. Song<sup>27</sup>, Yu. V. Stenkin<sup>26,32</sup>, V. Stepanov<sup>26</sup>, Q. N. Sun<sup>8</sup>, X. N. Sun<sup>28</sup>, Z. B. Sun<sup>33</sup>, P. H. T. Tam<sup>18</sup>, Z. B. Tang<sup>6,7</sup>, W. W. Tian<sup>3,17</sup>, B. D. Wang<sup>1,2</sup>, C. Wang<sup>33</sup>, H. Wang<sup>8</sup>, H. G. Wang<sup>11</sup>, J. C. Wang<sup>25</sup>, J. S. Wang<sup>29,30</sup>, L. P. Wang<sup>22</sup>, L. Y. Wang<sup>12</sup>, R. N. Wang<sup>8</sup>, W. Wang<sup>18</sup>, W. Wang<sup>12</sup>, X. G. Wang<sup>28</sup>, X. J. Wang<sup>12</sup>, X. Y. Wang<sup>10</sup>, Y. D. Wang<sup>12</sup>, Y. J. Wang<sup>12</sup>, Y. P. Wang<sup>1,2,3</sup>, Zheng Wang<sup>6,1,2</sup>, Zhen Wang<sup>29,30</sup>, Z. H. Wang<sup>9</sup>, Z. X. Wang<sup>19</sup>, D. M. Wei<sup>13</sup>, J. J. Wei<sup>13</sup>, Y. J. Wei<sup>1,2,3</sup>, T. Wen<sup>19</sup>, C. Y. Wu<sup>1,2</sup>, H. R. Wu<sup>1,2</sup>, S. Wu<sup>1,2</sup>, W. X. Wu<sup>8</sup>, X. F. Wu<sup>13</sup>, S. Q. Xi<sup>8</sup>, J. Xia<sup>713</sup>, J. J. Xia<sup>8</sup>, G. M. Xiang<sup>3,15</sup>, G. Xiao<sup>1,2</sup>, H. B. Xiao<sup>11</sup>, G. G. Xin<sup>12</sup>, Y. L. Xin<sup>8</sup>, Y. Xing<sup>15</sup>, D. L. Xu<sup>29,30</sup>, R. X. Xu<sup>27</sup>, L. Xue<sup>22</sup>, D. H. Yan<sup>25</sup>, C. W. Yang<sup>9</sup>, F. F. Yang<sup>61,2</sup>, J. Y. Yang<sup>18</sup>, L. L. Yang<sup>18</sup>, M. J. Yang<sup>12</sup>, R. Z. Yang<sup>7</sup><sup>1</sup>, S. B. Yang<sup>19</sup>, Y. H. Yao<sup>9</sup>, Z. G. Yao<sup>12</sup>, Y. M. Ye<sup>23</sup>, L. Q. Yin<sup>12</sup>, N. Yin<sup>22</sup>, X. H. You<sup>12</sup>, Z. Y. You<sup>1,2,3</sup>, Y. H. Yu<sup>22</sup>, Q. Yuan<sup>13</sup>, H. D. Zeng<sup>13</sup>, T. X. Zeng<sup>6,1,2</sup>, W. Zeng<sup>19</sup>, Z. K. Zeng<sup>1,2,3</sup>, M. Zha<sup>1,2</sup>, X. X. Zhai<sup>1,2</sup>, B. B. Zhang<sup>10</sup>, H. M. Zhang<sup>10</sup>, H. Y. Zhang<sup>22</sup>, J. L. Zhang<sup>17</sup>, J. W. Zhang<sup>9</sup>, L. Zhang<sup>14</sup>, Li Zhang<sup>19</sup>, L. X. Zhang<sup>11</sup>, P. F. Zhang<sup>19</sup>, P. P. Zhang<sup>14</sup>, R. Zhang<sup>7,13</sup>, S. R. Zhang<sup>14</sup>, S. S. Zhang<sup>12</sup>, X. Zhang<sup>10</sup>, X. P. Zhang<sup>1,2</sup>, Yong Zhang<sup>1,2</sup>, Yi Zhang<sup>1,13</sup>, Y. F. Zhang<sup>8</sup>, Y. L. Zhang<sup>1,2</sup>, B. Zhao<sup>8</sup>, J. Zhao<sup>1,2</sup>, L. Zhao<sup>6,7</sup>, L. Z. Zhao<sup>14</sup>, S. P. Zhao<sup>13,22</sup>, F. Zheng<sup>33</sup>, Y. Zheng<sup>8</sup>, B. Zhou<sup>1,2</sup>, H. Zhou<sup>29,30</sup>, J. N. Zhou<sup>15</sup>, P. Zhou<sup>10</sup>, R. Zhou<sup>9</sup>, X. X. Zhou<sup>8</sup>, C. G. Zhu<sup>22</sup>, F. R. Zhu<sup>8</sup>, H. Zhu<sup>17</sup>, K. J. Zhu<sup>61,2,3</sup> & X. Zuo<sup>1,2</sup>

#### **Institutions: 31**

<sup>1</sup>Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China <sup>2</sup>University of Chinese Academy of Sciences, 100049 Beijing, China <sup>3</sup>TIANFU Cosmic Ray Research Center, Chengdu, Shichuan, China <sup>4</sup>University of Science and Technology of China, 230026 Hefei, Anhui, China <sup>5</sup>Tsinghua University, 100084 Beijing, China <sup>6</sup>National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China <sup>7</sup>National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China <sup>8</sup>Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China <sup>9</sup>Sun Yat-sen University, 519000 Zhuhai, Guangdong, China <sup>10</sup>Shool of Physics and Technology, Guangxi University, 530004 Nanning, Guangxi, China <sup>11</sup>Hebei Normal University, 050024 Shijiazhuang, Hebei, China <sup>12</sup>School of Physics and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China <sup>13</sup>Nanjing University, 210023 Nanjing, Jiangsu, China <sup>14</sup>Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210034 Nanjing, Jiangsu, China <sup>15</sup>Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China <sup>16</sup>Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China <sup>17</sup>School of Physical Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China <sup>18</sup>Sichuan University, 610065 Chengdu, Sichuan, China <sup>19</sup>Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China <sup>20</sup>Yunnan University, 650091 Kunming, Yunnan, China <sup>21</sup>Yunnan Astronomical Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China <sup>22</sup>Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia <sup>23</sup>Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genéve, Geneva, Switzerland <sup>24</sup>Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand

list of institutions waiting for membership: APS, France MoU of Collaboration: VERITAS, ANTARES, GVD CTAO, MAGIC, IceCube



**Multi-Messenger** 

### **Collaboration Network**



### Bird-eyes' View of LHAASO, March, 2021 • Location: 29°21'27.6" N, 100°08'19.6" E • Altitude: 4410 m a.s.l.







## LHAASO Layout

















Selection of  $\gamma$ -rays out of CR background

Active Area for Muons vs. Array Area: 4%

#### ~1 PeV CR event: many muons

MJD:58788, NHitE:656, NHitM:154, Theta:31.2deg, Phi:284.0deg

~ 1 PeV γ-ray event : very few muons







Area: 1.3 km<sup>2</sup> Detectors: 5195 ED 1188 MD Energy Range: 0.01-10 PeV

۲



## CR background Rejection Power

- Counting number of measured muons in a shower
- Cutting on ratio  $N_{\mu}/N_{e} < 1/230$
- BG-free  $(N_{\gamma} > 10N_{CR})$  Photon Counting for showers E>100 TeV from the Crab



### Wide FoV C-Telescope Array (WFCTA) Cross-checking inside Collaboration



- WFCTA measured the event simultaneously L/W~2.6, N<sub>pe</sub>~9100 in 11 pixels
   Energy: 0.9±0.2 PeV
- KM2A measured the event N<sub>particle</sub>~4574 in 395 EDs
   Energy: 0.9±0.1 PeV

高海拔宇宙线观测站

Chance probability: <0.1% N<sub>u</sub>~15 in 11 MDs







## KM2A performances

- Shower geometrical reconstruction
  - Arrival direction: resolution of 0.26° @100 TeV
  - $_{\diamond}~$  Shower core location: resolution of 3~m~@100~TeV
  - Zenith angle effect







## Shower Energy Reconstruction by KM2A

- Lateral distribution: modified NKG function
- Energy estimator:  $\rho_{50}$  particle density

- Linear response function





## WCDA Pointing and Resolution

Pointing accuracy is already good, though we still found the orientation of WCDA-1 29.45° towards west instead of 30.00° that results in an even better pointing





### 20" PMTs used in 70% WCDA

#### Enhancement of the sensitivity below 300 GeV

#### Transient Phenomena: GRB、 AGN-flares、multi-messenger astronomy ...











### SED of the Crab: "standard Candle" & PeVatron

LHAASO, Science, DOI10.1126/science.abg5137, 2021

#### LHAASO:

- > Covering 3.5 decades of energy
- > Agreeing with other experiments below 100 TeV
- Self cross-checking between WCDA & KM2A
- LHAASO:
- > Unique UHE SED
- > A PeVatron without ambiguity
- Clear origin: a well-known PWN



## SED of the Crab: Extreme E-accelerator

LHAASO, Science, DOI10.1126/science.abg5137, 2021

- Perfect interpretation of one-zone electronic origin up to 50TeV
- Reasonable extension up to 1 PeV, with a deviation of 4 σ
- An extreme e-accelerator:
  - > 2.3 PeV electrons

16¥

- > in ~0.025 pc core region
- accelerating efficiency of 15% (1000× better than SNR shock waves)
- Can not rule out proton origin of photons ~1 PeV, yet
- 1 or 2 photons are expected above 1 PeV per year that enables a clarification in 2 or 3 years





## Record by KM2A 1.4 PeV Photon from Cygnus Direction

LHAASO, Nature, 594, p.33-36, 2021





## Discovery in KM2A Survey Our Galaxy is full of PeVatrons



| Source name       | RA (°) | dec. (°) | Significance above 100 TeV (×σ) | E <sub>max</sub> (PeV)     | Flux at 100 TeV (CU) |
|-------------------|--------|----------|---------------------------------|----------------------------|----------------------|
| LHAASO J0534+2202 | 83.55  | 22.05    | 17.8                            | 0.88 ± 0.11                | 1.00(0.14)           |
| LHAASO J1825-1326 | 276.45 | -13.45   | 16.4                            | 0.42 ± 0.16                | 3.57(0.52)           |
| LHAASO J1839-0545 | 279.95 | -5.75    | 7.7                             | 0.21 ± 0.05                | 0.70(0.18)           |
| LHAASO J1843-0338 | 280.75 | -3.65    | 8.5                             | 0.26 - 0.10+0.16           | 0.73(0.17)           |
| LHAASO J1849-0003 | 282.35 | -0.05    | 10.4                            | 0.35 ± 0.07                | 0.74(0.15)           |
| LHAASO J1908+0621 | 287.05 | 6.35     | 17.2                            | 0.44 ± 0.05                | 1.36(0.18)           |
| LHAASO J1929+1745 | 292.25 | 17.75    | 7.4                             | 0.71-0.07 <sup>+0.16</sup> | 0.38(0.09)           |
| LHAASO J1956+2845 | 299.05 | 28.75    | 7.4                             | 0.42 ± 0.03                | 0.41(0.09)           |
| LHAASO J2018+3651 | 304.75 | 36.85    | 10.4                            | 0.27 ± 0.02                | 0.50(0.10)           |
| LHAASO J2032+4102 | 308.05 | 41.05    | 10.5                            | 1.42 ± 0.13                | 0.54(0.10)           |
| LHAASO J2108+5157 | 317.15 | 51.95    | 8.3                             | 0.43 ± 0.05                | 0.38(0.09)           |
| LHAASO J2226+6057 | 336.75 | 60.95    | 13.6                            | 0.57 ± 0.19                | 1.05(0.16)           |

12 PeVatrons are discovered
 High Standard: significance >7σ
 BG-free: Cosmic Ray background rejection rate <10<sup>-4</sup>
 High Statistics: 530 UHE photons
 Multiple Type of Sources





### Discovery in KM2A Survey Do not observe clear cut-off up to ~1 PeV





## Discovery Using KM2A Onset of UHE γ-ray Astronomy

### **E > 0.1 PeV**

- VHE γ-ray astronomic major instrument:
   Sensitive below 0.1 PeV
- LHAASO: provide a statistically significant coverage of the energy range above 0.1 PeV
- ♦ Spectroscopy: 15% resolution
- ♦ Morphology: 0.3° PSF
- ♦ Multi-messenger Astronomy: UHE band





#### $\gamma$ -ray astronomic topics with LHAASO

#### Pevatrons:

- ID 923: Sha Wu (16/07) Three brightest UHE sources
- ID 912: Lingyu Wang (16/07) Crab Nebula
- ID 878: Cong Li (15/07) Cygnus Cocoon
- ID 1081: Min Zha (16/07) WCDA on UHE

#### PWN Halos

ID 964: Yingying Guo (20/07) Geminga and Monogem

#### Diffuse gamma-ray

- ID 1071: Shiping zhao(19/07) Galactic plane
- ID 894: Marco Chianese (21/07) dark matter

#### AGN & GRB

- ID 969: Yuhua Yao(21/07) GRB 190829A
- ID 1103: Ran Wang(16/07) Mark 421

# **Charged Cosmic Rays**

- Measuring AS front by WCDA or ED array (0.2°)
- Measuring E-flux near core by WCDA (2m)
- Measuring  $\mu$ -content by MD array (1-10<sup>4</sup> each)
- Measuring  $X_{max}$  by WFCTA (40 g/cm<sup>2</sup>)

拔宇宙线观测站

Measuring AS Energy by WFCTA (15%)

- Calibrate **E-scale** using moon shadow by WCDA at 6 <E<30 TeV
- **ΔE/E** currently 30% dominated by statistics and **<10%** in 4 yrs
- Propagating the **E-scale** to **WFCTA** by using commonly triggered CRs





#### **LHAASO WFCTA SiPM Camera**





## The knee of Proton spectrum

- Coincident events by WCDA and 6 telescopes
- Shower cores in WCDA-1
- Selecting pure proton showers by 3 parameters: aperture of 1000 m<sup>2</sup> sr
- ♦ H+He showers: aperture of 1800 m<sup>2</sup> sr







#### The knee of Fe spectrum (E<sub>b</sub>~24 or 50PeV)

- Coincident events by both WFCTA and full KM2A
- Shower cores are in 1 km<sup>2</sup>
- Incline showers touch down at the depth of 840 g/cm<sup>2</sup>





## **CR related topics with LHAASO**

- Large Scale Anisotropy of CRs (talk 871)
- Muon-content and longitudinal development of air showers (talk 872, poster 940), reconstruction and calibration issues (posters 944, 921, 1275, 1280, 1281)





- LHAASO is complete now, all detectors are in DAQ today!
- 12 PeVatrons are discovered in our galaxy
- A photon at 1.4 PeV is recorded from Cygnus YMC direction
- Implications:
  - **Our galaxy is full of <b>PeVatrons** accelerating particles over **1** PeV
  - Onset of "UHE (>0.1 PeV) Astronomy"
  - **3** Potential CR origins: many type of candidates
  - The Crab: extreme electron-PeVatron emitting 1.1 PeV photon and posing challenges
- More discoveries are expected, not only for gamma ray astronomy but also for charged CRs