LHAASO and Highlights of Science results

Zhen Cao for LHAASO Coll.
Institute of High Energy Physics, Beijing

ICRC 2021, On-line, July, 2021

LHAASO Collaboration

Scientists: 275

Institutions: 31

Zhen Cao ${ }^{1.233^{\boxtimes}}$, F. A. Aharonian ${ }^{4.5}{ }^{\mathbb{Q}}$, Q. An ${ }^{67}$, Axikegu ${ }^{8}$, L. X. Bai ${ }^{9}$, Y. X. Bai ${ }^{12}$, Y. W. Bao ${ }^{10}$, D. Bastieri", X. J. Bi ${ }^{12,3}$, Y. J. Bi 12, H. Cai ${ }^{12}$, J. T. Cai ${ }^{10}$, Zhe Cao ${ }^{6,7}$, J. Chang ${ }^{13}$, J. F. Chang ${ }^{612,2}$, X. C. Chang ${ }^{1,1,}$, B. M. Chen ${ }^{14}$, J. Chen ${ }^{9}$, L. Chen ${ }^{12,3,}$, Liang Chen ${ }^{15}$, Long Chen ${ }^{8}$, M. J. Chen ${ }^{12}$, M. L. Chen ${ }^{612}$, Q. H. Chen ${ }^{1}$, S. H. Chen ${ }^{123}$, S. Z. Chen ${ }^{12}$, L. Chen, X. L. Chen ${ }^{12,3}$, Y. Chen ${ }^{10}$

 C. D. Gao ${ }^{22}$, Q. Gao ${ }^{16}$, W. Gao ${ }^{22^{\prime}}$, M. M. Ge ${ }^{19}$, L. S. Geng ${ }^{12}$, G. H. Gong ${ }^{23}$, Q. B. Gou' ${ }^{12}$, M. H. Gu ${ }^{\text {B4, }}$
 J. C. $\mathrm{He}^{12,3}$, S. L. He ${ }^{11}$, X. B. He^{18}, Y. He ${ }^{8}$, M. Heller ${ }^{20}$, Y. K. Hor ${ }^{18}$, C. Hou ${ }^{12}$, X. Hou ${ }^{25}$, H. B. Hu ${ }^{12,3}$, S. Hu ${ }^{\text {e }}$, C. C. Hu ${ }^{123,}$, X. J. Hu ${ }^{23}$, D. H. Huang ${ }^{8}$, Q. L. Huang ${ }^{12}$, W. H. Huang ${ }^{22}$, X. T. Huang ${ }^{22}$

 W. J. Long ${ }^{8}$ R L1 1^{19} H. K. L1.2 B.O. Ma ${ }^{27}$ L L. Ma ${ }^{1.2}$ X. H. Ma ${ }^{12}$ J. R. Mao ${ }^{25}$ A Maso W. Mitthumsiri ${ }^{31}$, T. Montaruli ${ }^{20}$, Y. C. Nan 22, B. Y. Pang ${ }^{3}$, P. Pattarakijwanich ${ }^{31}$, Z. Y. Pei ${ }^{11}$ M. Y. Qi ${ }^{12}$, D. Ruffolo ${ }^{33}$, V. Rulev ${ }^{26}$, A. Sáiz ${ }^{31}$, L. Shao ${ }^{14}$, O. Shchegolev ${ }^{26,32}$, X. D. Sheng ${ }^{12}$, J. R. Shi ${ }^{12}$, H. C. Song ${ }^{2}$, Yu. V. Stenkin ${ }^{26,32}$, V. Stepanov ${ }^{26}$, Q. N. Sun ${ }^{\text {b }}$, X. N. Sun ${ }^{26}$, Z. B. Sun ${ }^{33}$, P. H. T. Tam ${ }^{18}$, Z. B. Tang ${ }^{62}$, W. W. Tian ${ }^{317}$, B. D. Wang ${ }^{12}$, C. Wang ${ }^{33}$, H. Wang ${ }^{8}$, H. G. Wang", J. C. Wang ${ }^{25}$, J. S. Wang ${ }^{29,30}$, L. P. Wang ${ }^{22}$, L. Y. Wang ${ }^{1,2}$, R. N. Wang ${ }^{8}$, W. Wang ${ }^{18}$, W. Wang ${ }^{12}$, X. G. Wang ${ }^{28}$, X. J. Wang ${ }^{12}$, X. Y. Wang ${ }^{10}$, Y. D. Wang ${ }^{12}$, Y. J. Wang ${ }^{12}$, Y. P. Wang ${ }^{1,23}$ Zheng Wang ${ }^{61,2}$, Zhen Wang ${ }^{29,30}$, Z. H. Wang ${ }^{9}$, Z. X. Wang ${ }^{1{ }^{19}}$, D. M. Wei ${ }^{13}$, J. J. Wei ${ }^{13}$, Y. J. Wei ${ }^{12,3}$
 L. Xue ${ }^{22}$, D.H. Yan ${ }^{25}$, C. W. Yang ${ }^{9}$, F. F. Yang ${ }^{6.12}$, J. Y. Yang ${ }^{18}$, L. L. Yang ${ }^{18}$, M. J. Yang ${ }^{1.2}$ R. Z. Yang ${ }^{2}$, S. B. Yang ${ }^{19}$, Y. H. Yao ${ }^{9}$, Z. G. Yao ${ }^{12}$, Y. M. Ye ${ }^{23}$, L. Q. Yin ${ }^{12}$, N. Yin ${ }^{22}$, X. H. You ${ }^{12}$,
 X. X. Zhai ${ }^{12}$, B. B. Zhang ${ }^{10}$, H. M. Zhang ${ }^{10}$, H. Y. Zhang ${ }^{22}$, J. L. Zhang ${ }^{17}$, J. W. Zhang ${ }^{9}$, L. Zhang ${ }^{14}$ Li Zhang ${ }^{19}$, L. X. Zhang ${ }^{11}$, P. F. Zhang ${ }^{19}$, P. P. Zhang ${ }^{14}$, R. Zhang ${ }^{713}$, S. R. Zhang ${ }^{14}$, S. S. Zhang ${ }^{12}$ X. Zhang ${ }^{10}$, X. P. Zhang ${ }^{1,2}$, Yong Zhang ${ }^{1,2}$, Yi Zhang, Y. F. Zhang ${ }^{\text {² }}$, Y. L. Zhang ${ }^{12}$, B. Zhao ${ }^{\text {b }}$
 X. Zuo ${ }^{12}$
${ }^{1}$ Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
${ }^{2}$ University of Chinese Academy of Sciences, 100049 Beijing, China
${ }^{3}$ TIANFU Cosmic Ray Research Center, Chengdu, Shichuan, China
${ }^{4}$ University of Science and Technology of China, 230026 Hefei, Anhui, China
${ }^{5}$ Tsinghua University, 100084 Beijing, China
${ }^{6}$ National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China
${ }^{7}$ National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China
${ }^{8}$ Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
${ }^{9}$ Sun Yat-sen University, 519000 Zhuhai, Guangdong, China
${ }^{10}$ Shool of Physics and Technology,Guangxi University, 530004 Nanning, Guangxi, China
${ }^{11}$ Hebei Normal University, 050024 Shijiazhuang, Hebei, China
${ }^{12}$ School of Physics and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
${ }^{13}$ Nanjing University, 210023 Nanjing, Jiangsu, China
${ }^{14}$ Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210034 Nanjing, Jiangsu, China
${ }^{15}$ Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
${ }^{16}$ Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China
${ }^{17}$ School of Physical Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
${ }^{18}$ Sichuan University, 610065 Chengdu, Sichuan, China
${ }^{19}$ Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China
${ }^{20}$ Yunnan University, 650091 Kunming, Yunnan, China
${ }^{21}$ Yunnan Astronomical Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China
${ }^{22}$ Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia
${ }^{23}$ Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genéve, Geneva, Switzerland
${ }^{24}$ Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
list of institutions waiting
for membership: APS, France
MoU of Collaboration: VERITAS, ANTARES, GVD

Multi－Messenger

Collaboration Network

ANTARES（NT）
KM3Net（NT）

VERITAS（CT）

Bird-eyes' View of LHAASO, March, 2021
 - Location: $29^{\circ} 2^{\prime} 1^{\prime} 27.6^{\prime \prime}$ N, $100^{\circ} 08^{\prime} 19.6^{\prime \prime}$ E

- Altitude: 4410 m a.s.l.

LHAASO Layout

Water Cherenkov

 Detector Array (WCDA)

20210511/131236;0.554789897: $\mathbf{n T r i g}=-1,0=37.81 \pm 0.02^{\circ}, \phi=103.39 \pm 0.02^{\circ}$

	50000
-	25000
-	12000
-	6000
-	3000
-	1500
-	800
-	400
\bullet	200
-	100
-	5
-	25
-	12
-	5.5
-	2.5
-	1.5
-	0.8
.	0.4
.	0.2

KM2A

Selection of γ-rays out of CR background

Active Area for Muons vs. Array Area: 4\%

Occupancy [2021-07-19 17:20] Total: 5181

Area:
$1.3 \mathrm{~km}^{2}$

- Detectors:

5195 ED

1188 MD

- Energy Range: 0.01-10 PeV

CR background Rejection Power

- Counting number of measured muons in a shower
- Cutting on ratio $\mathrm{N}_{\mu} / \mathrm{N}_{\mathrm{e}}<1 / 230$
- BG-free $\left(\mathrm{N}_{\gamma}>10 \mathrm{~N}_{\mathrm{CR}}\right)$ Photon Counting for showers $\mathrm{E}>100 \mathrm{TeV}$ from the Crab

Wide FoV C-Telescope Array (WFCTA) Cross-checking inside Collaboration

- WFCTA measured the event simultaneously L/W~2.6, $\mathrm{N}_{\mathrm{pe}} \sim 9100$ in 11 pixels
- Energy: 0.9士0.2 PeV
- KM2A measured the event $\mathrm{N}_{\text {particle }} \sim 4574$ in 395 EDs
- Energy: 0.9 $\pm 0.1 \mathrm{PeV}$
- Chance probability: <0.1\% $N_{\mu} \sim 15$ in 11 MDs

- Telescopes:

18

- Energy Range: 0.1-100 PeV

KM2A performances

－Shower geometrical reconstruction
－Arrival direction：resolution of $0.26^{\circ} @ 100 \mathrm{TeV}$
－Shower core location：resolution of $3 \mathrm{~m} @ 100 \mathrm{TeV}$
－Zenith angle effect

Shower Energy Reconstruction by KM2A

- Lateral distribution: modified NKG function
- Energy estimator: ρ_{50} particle density
- Gaussian Resolution function $>100 \mathrm{TeV}: \mathbf{1 4 \%}$
- Linear response function

WCDA Pointing and Resolution

- Pointing accuracy is already good, though we still found the orientation of WCDA-1 29.45° towards west instead of 30.00° that results in an even better pointing

20" PMTs used in 70\% WCDA

Enhancement of the sensitivity below 300 GeV

- Transient Phenomena: GRB, AGN-flares, multi-messenger astronomy ...

SED of the Crab: "standard Candle"\& PeVatron
LHAASO, Science, DOI10.1126/science.abg5137, 2021

- LHAASO:
- Covering 3.5 decades of energy
- Agreeing with other experiments below 100 TeV
- Self cross-checking between WCDA \& KM2A
- LHAASO:
- Unique UHE SED
> A PeVatron without ambiguity
, Clear origin: a well-known PWN

- Perfect interpretation of one-zone electronic origin up to 50 TeV
- Reasonable extension up to 1 PeV , with a deviation of 4σ
- An extreme e-accelerator:
, 2.3 PeV electrons
- in ~ 0.025 pc core region
accelerating efficiency of 15% ($1000 \times$ better than SNR shock waves)
- Can not rule out proton origin of photons ~1 PeV, yet
- 1 or 2 photons are expected above 1 PeV per year that enables a clarification in 2 or 3 years

Record by KM2A

 1.4 PeV Photon from Cygnus Direction
LHAASO, Nature, 594, p.33-36, 2021

Discovery in KM2A Survey Our Galaxy is full of PeVatrons

Source name	$\mathrm{RA}\left({ }^{\circ}\right.$)	dec. ${ }^{(0)}$	Significance above 100 TeV (\times c)	$E_{\text {max }}(\mathrm{PeV})$	Fluxat 100 TeV (CU)
LHAASO Jo534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	27.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21 ± 0.05	0.70(0.18)
LHAASO J843-0338	280.75	-3.65	8.5	$0.26-0.10^{+0.16}$	0.73(0.17)
LHAASO J849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	$0.71-0.07^{+0.16}$	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

12 PeVatrons are discovered

- High Standard: significance $>7 \sigma$
* LHAASO JIB25-1326
-BG-free: Cosmic Ray background rejection rate $<10^{-4}$
- High Statistics: 530 UHE photons

Multiple Type of Sources

Discovery in KM2A Survey Do not observe clear cut-off up to $\sim 1 \mathrm{PeV}$

Discovery Using KM2A Onset of UHE γ-ray Astronomy

E > 0.1 PeV

- VHE γ-ray astronomic major instrument: Sensitive below 0.1 PeV
- LHAASO: provide a statistically significant coverage of the energy range above 0.1 PeV
- Spectroscopy: 15\% resolution
- Morphology: 0.3³ PSF
- Multi-messenger Astronomy: UHE band

γ－ray astronomic topics with LHAASO

－Pevatrons：

＊ID 923：Sha Wu（16／07）Three brightest UHE sources
－ID 912：Lingyu Wang（16／07）Crab Nebula
－ID 878：Cong Li（15／07）Cygnus Cocoon
－ID 1081：Min Zha（16／07）WCDA on UHE
－PWN Halos
＊ID 964：Yingying Guo（20／07）Geminga and Monogem
－Diffuse gamma－ray
－ID 1071：Shiping zhao（19／07）Galactic plane
－ID 894：Marco Chianese（21／07）dark matter
－AGN \＆GRB
－ID 969：Yuhua Yao（21／07）GRB 190829A
－ID 1103：Ran Wang（16／07）Mark 421

Charged Cosmic Rays

－Measuring AS front by WCDA or ED array（ 0.2° ）
－Measuring E－flux near core by WCDA（2m）
－Measuring $\boldsymbol{\mu}$－content by MD array（1－104 each）
－Measuring $\mathbf{X}_{\text {max }}$ by WFCTA（ $40 \mathrm{~g} / \mathrm{cm}^{2}$ ）
－Measuring AS Energy by WFCTA（15\％）

Calibrate E－scale using moon shadow by WCDA at $6<\mathrm{E}<30 \mathrm{TeV}$ $\Delta \mathrm{E} / \mathrm{E}$ currently 30% dominated by statistics and $<\mathbf{1 0 \%}$ in 4 yrs
Propagating the E－scale to WFCTA by using commonly triggered CRs

LHAASO WFCTA SiPM Camera

> SiPM enables an operation of WFCTA with full moon
> Effective Operational time 1400 hrs per year
$>0.5^{\circ}$ pixels with dynamic range 10-32, 000 pe enable a coverage $100 \mathrm{TeV}-100 \mathrm{PeV}$

The knee of Proton spectrum．

－Coincident events by WCDA and 6 telescopes
－Shower cores in WCDA－1
－Selecting pure proton showers by 3 parameters：aperture of $1000 \mathrm{~m}^{2} \mathrm{sr}$
－H +He showers：aperture of $1800 \mathrm{~m}^{2} \mathrm{sr}$

$\left(\mathrm{E}_{\mathrm{b}} \sim 0.7 \mathrm{PeV}\right)$ ：＊＊＊＊＊）

The knee of Fe spectrum

($\mathrm{E}_{\mathrm{b}} \sim 24$ or 50 PeV)
$>$ Coincident events by both WFCTA and full KM2A
Shower cores are in $1 \mathbf{k m}^{2}$
$>$ Incline showers touch down at the depth of $840 \mathrm{~g} / \mathrm{cm}^{2}$

- Absolute E-scale Calibration for the CR measurements (talk 897)
- Large Scale Anisotropy of CRs (talk 871)
- Muon-content and longitudinal development of air showers (talk 872, poster 940), reconstruction and calibration issues (posters 944, 921, $1275,1280,1281)$

Conclusion

- LHAASO is complete now, all detectors are in DAQ today!
- 12 PeVatrons are discovered in our galaxy
- A photon at 1.4 PeV is recorded from Cygnus YMC direction
- Implications:
(1) Our galaxy is full of PeVatrons accelerating particles over 1 PeV
(2) Onset of "UHE ($>0.1 \mathrm{PeV}$) Astronomy"
(8) Potential CR origins: many type of candidates
(4) The Crab: extreme electron-PeVatron emitting 1.1 PeV photon and posing challenges
- More discoveries are expected, not only for gamma ray astronomy but also for charged CRs

