

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

M. Heller on behalf of the CTA-LST Project - ICRC 12-23/07/2021

and set of the local division of the local d

Courtesy of D. Kerszberg

Outline

- Goal
- Project organisation
- Simulation and Analysis effort
 - Simulation phase-space
 - Analysis pipelines
- Photo-detection plane
 - Optical elements
 - Sensor technology
 - Front-end electronics
- Readout
 - Trigger approach

Goals

- The proposed design should take full advantage of the SiPM characteristics ✦ Gain in duty-cycle, robustness, stability, self-calibration, etc...
- The Advanced SiPM Camera must:
 - outperform the existing camera over the entire energy range
 - be upgradable/reprogrammable
- Baseline design: Decreasing pixel size from 0.1° to 0.05° ✦ Going for fully digital readout
- Many challenges to tackle:
 - + Power consumption
 - **Data throughput**
 - + Cost
 - + 5 years to complete 1st prototype

LST PMT camera (0.1°)

LST SiPM camera (0.05°)

The project organisation

- The R&D program is part of the LST organigram
- But has its own organisation, split in five working groups:
 - Management
 - Simulation and Analysis
 - Photo-detection plane
 - ✦ Readout
 - Mechanics
 - International project: France, Italy, Japan, Poland Spain, Switzerland

Simulation and Analysis Large phase-space to explore

- Corsika + sim_telarray simulations used for parameters exploration
- Phase-space: Entrance window • w/ or w/o optical filter ?
 - Pixel size:
 - 0.05° or bigger ?
 - Sensor choice:
 - photo-detection efficiency vs. λ , optical cross talk, Cµcell, etc...
 - Front-end:
 - Signal shaping, linearity, dynamic range \bigcirc
 - Trigger topology:
 - Standard analog sum trigger or advanced trigger

Simulation and Analysis Large phase-space to explore

- Corsika + sim_telarray simulations used for parameters exploration
- Phase-space: Entrance window • w/ or w/o optical filter ?
 - Pixel size:
 - 0.05° or bigger ?
 - Sensor choice:
 - photo-detection efficiency vs. λ , optical cross talk, Cµcell, etc...
 - Front-end:
 - Signal shaping, linearity, dynamic range \bigcirc
 - Trigger topology:
 - Standard analog sum trigger or advanced trigger

Simulation and Analysis Analysis Pipelines

- The increased image granularity reveals more image features
- Standard LST analysis pipeline (see contribution):
 - Hillas parameter extraction fed to random forests as:
 - regressors for energy and direction reconstruction
 - classifier for gamma/hadron separation
- Template-based or Likelihood method
 - ImPact, method++ +
 - LHFit (this ICRC21) •
- Deep Learning analysis pipeline
 - Convolutional Neural Network for regression and classification

 - <u>yphysnet</u>

GEO: c_x=-0.24,c_y=0.99,cist=1.02,length=0.434,width=0.268,size=2.0582/20562,lcss=0.00,lossTead=0.00,lgrac=1.35

Photon-detection Plane Optical elements and sensors

- Night Sky Background becomes a real issue when such large light collection surface are used
 - ◆ PMT (0.1°)
 - w/o filter: 246 MHz p.e./pixel
 - ✦ SiPM (0.05°)
 - w/o filter: 386 MHz p.e./pixel
 - w filter: 134 MHz p.e./pixel
- Pile up of NSB photons result in increase of the hardware threshold
- Filter decrease NSB contribution but also limits the gain of SiPM increased PDE compared to PMTs

Configuration	Safe	NSB	Cherenkov	NSB	Optical	5
	Threshold	rate	cum. efficiency	cum. efficiency	Cross-Talk	Thr
	[photons]	[MHz/pixel]	[%]	[%]	[%]	[]
PMT w/o filter	286	246	15.9	1.7	0	
LCT5 w/o filter ($\Delta V=4.4$)	272	386	20.8	6.2	8	
LCT5 w/ filter ($\Delta V=4.4$)	229	108	14.0	1.9	8	
LCT5 w/o filter ($\Delta V=7.0$)	218	426	24.3	8.1	15	
LCT5 w/ filter ($\Delta V=7.0$)	179	109	16.0	2.5	15	

Photon-detection Plane Optical elements and sensors

- Night Sky Background becomes a real issue when such large light collection surface are used
 - ◆ PMT (0.1°)
 - w/o filter: 246 MHz p.e./pixel
 - ✦ SiPM (0.05°)
 - w/o filter: 386 MHz p.e./pixel
 - w filter: 134 MHz p.e./pixel
- Pile up of NSB photons result in increase of the hardware threshold
- Filter decrease NSB contribution but also limits the gain of SiPM increased PDE compared to PMTs

Configuration	Safe	NSB	Cherenkov	NSB	Optical	5
	Threshold	rate	cum. efficiency	cum. efficiency	Cross-Talk	Thr
	[photons]	[MHz/pixel]	[%]	[%]	[%]	[]
PMT w/o filter	286	246	15.9	1.7	0	
LCT5 w/o filter ($\Delta V=4.4$)	272	386	20.8	6.2	8	
LCT5 w/ filter ($\Delta V=4.4$)	229	108	14.0	1.9	8	
LCT5 w/o filter ($\Delta V=7.0$)	218	426	24.3	8.1	15	
LCT5 w/ filter ($\Delta V=7.0$)	179	109	16.0	2.5	15	

Photon-detection Plane Front-end electronics

- The main design drivers here are the power consumption and the speed
 - ◆ < 100 mW/ch</p>
 - Pulse FWHM < 3 ns \blacklozenge

r SiPM w/o er 7ns
nsbx2
proton
safe threshold

Photon-detection Plane Front-end electronics

- The main design drivers here are the power consumption and the speed
 - < 100 mW/ch •
 - Pulse FWHM < 3 ns
- Discrete components pre-amplifying stages can reach very short pulses but power consumption prohibits their use for such a large amount of pixels
- Using an ASIC or developing one is required ✦ FAST, MUSIC, FastIC
 - Tailored design
- Single gain and ~300 p.e. dynamic range

LST SiPM w/

filter 3ns

nstx2

proton

safe threshold

107

106

[²H] 10⁵

104

103

104

20

40

Th	reshold [pe]			
	Pixel size [°]	Pre-amplifying stage	FWHM [ns]	
FBK NUV-HD 14 x (6x6 mm²)	0.1	INFN	3.4	
FBK NUV-HD 12 x (6x6 mm ²	0.1	MUSIC	5.3	
HPK LCT2 (hex. sensor)	0.05	INFN	2.9	
HPK LCT2 (hex. sensor)	0.05	MUSIC	5.1	

60

80

100

The LST Advanced SiPM Camera Readout

- Baseline design will feature 12 bits FADCs @ 1 GSps allowing a fully digital readout architecture
- Different approaches under study with different balance between complexity vs. performance
 - Trigger-less approach
 - Advanced trigger in the camera
 - Loose trigger in the camera / more complexe in the camera server
 - Digital photon counter (DiPC)
- In all cases, real-time processing is a must
- Experience on architectures design from IACT field and others will be used
- Several architectures are being studied to accommodate the proposed solutions

Data throughput

Performance

Complexity inside the camera

Flexibility

Complexity outside the camera

The LST Advanced SiPM Camera Readout

- Baseline design will feature 12 bits FADCs @ 1 GSps allowing a fully digital readout architecture
- Different approaches under study with different balance between complexity vs. performance
 - Trigger-less approach
 - Advanced trigger in the camera
 - Loose trigger in the camera / more complexe in the camera server
 - Digital photon counter (DiPC)
- In all cases, real-time processing is a must
- Experience on architectures design from IACT field and others will be used
- Several architectures are being studied to accommodate the proposed solutions

The LST Advanced SiPM Camera Readout

- Baseline design will feature 12 bits FADCs @ 1 GSps allowing a fully digital readout architecture
- Different approaches under study with different balance between complexity vs. performance
 - Trigger-less approach
 - Advanced trigger in the camera
 - Loose trigger in the camera / more complexe in the camera server
 - Digital photon counter (DiPC)
- In all cases, real-time processing is a must
- Experience on architectures design from IACT field and others will be used
- Several architectures are being studied to accommodate the proposed solutions

Current "FADC" "DiPC"

The LST Advanced SiPM Camera **Conclusion and prospects**

- If using SiPMs seems like a natural evolution, their use is not trivial for large telescopes (speed, IR sensitivity, ...)
- Important effort on dedicated simulations and analysis pipelines on-going • Parameter phase-space is large and machine learning based stereo analysis are
- still not ready
- Technological challenges are being tackled by group of experts Low power components (pre-amplifier, FADC, etc ..) Architectures to cope with large data throughput
- Dedicated funding for the project R&D are starting to come
- Stay tuned, first results will come soon

cherenkov telescope array

Thank you for your attention !

We gratefully acknowledge financial support from the agencies and organizations listed here: www.cta-observatory.org/consortium_acknowledgments

