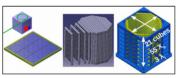

The HERD experiment

The High Energy cosmic-Radiation Detection (HERD):


- It is a space mission that will be installed aboard the Chinese Space Station (CSS) around 2027.
- The main goal is to extend the measurement of cosmic ray spectra up to the knee region.
- The instrument:
- Silicon Charge Detectors (SCD): multiple charge measurements.
- Plastic Scintillator Detectors (PSD): anti-coincidence detector.
- FIber Trackers (FIT): reconstructs track of charged particles and photons.
- Transition Radiation Detector (TRD): checks the calibration of the energy scale.
- Calorimeter (CALO): it is similar ()to the CaloCube design.

Design and expected performances of the large acceptance calorimeter for the HERD space mission.

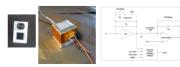
Lorenzo Pacini et al., for the HERD collaboration

The calorimeter

- It is an homogeneous, isotropic, 3D segmented calorimeter. It consists of $\sim 7500 \text{ LYSO}$ cubes
- It accepts particles coming from each surface: effective geometrical factor (GF) larger than $1 \text{ m}^2\text{sr.}$

- The "double read-out" system:
- cross-calibration of the energy scale,
 - two independent fast triggers.

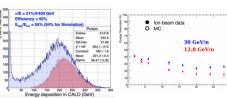
First read-out system


- WaveLength Shifting fibers (WLS).
- Image Intensified scientific CMOS.
- Frame rate: > 800 frames/sec.
- \bigcirc Low read-out noise (< 1.5e).

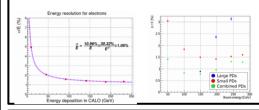
Calo performance			
MC simulation based on GEANT4.			
Particle	Energy.	Effective acceptance	Energy resolution
Protons	$<= 1 { m PeV}$	$> 1 \mathrm{~m2sr}$	$\sim 30\%$
Electrons	$<= 10 { m TeV}$	$\sim 2 \ m2sr$	$\sim 2\%$
$\int_{0}^{0} \int_{0}^{0} \int_{0$		Nuclei @ 10 TeV: energy resolution vs effective GF.	
Second read-out system			

Calo performance

- Photo-diodes with different active areas connected to HIDRA chips.
- The S/N ratio for MIP is >= 4.
- \bigcirc Expected saturation level ~ 250 TeV.



Beam test results


Confirm MC expected performance.

WLS system: protons @ 400 GeV

PD system: energy resolution of nuclei

Electrons energy resolution with WLS (left) and PD (right) systems.

Summary

The innovative CALO design allows a large effective geometrical factor and a good energy resolution. The double read-out scheme will strongly improve both the calibration and trigger capabilities. A new calorimeter prototype including both WLSs and PDs is under construction.

