

Design and expected performances of the large acceptance calorimeter for the HERD space mission.

Lorenzo Pacini et al., for the HERD collaboration

The HERD calorimeter

The High Energy cosmic-Radiation Detection (HERD):
O Space mission that will be installed aboard the Chinese Space Station (CSS) around 2027.
O Main goal: extend the measurement of cosmic ray spectra up to the knee region.

The main detector is the calorimeter (CALO):
O It is an homogeneous, isotropic, 3D segmented calorimeter.

O It consists of ~ 7500 LYSO cubes
O It accepts particles coming from each surface.
○ Effective geometrical factor (GF) few m^{2} sr.

It allows the cross-calibration of the energy scale and two independent fast triggers.

O WaveLength Shifting fibers (WLS).
O Image Intensified scientific CMOS.

- Frame rate: >800 frames $/ \mathrm{sec}$.
\bigcirc Low read-out noise ($<1.5 \mathrm{e}$).

(b) IsCMOS.

O Photo-diodes with different active areas connected to HIDRA chips.

- The S / N ratio for MIP is $>=4$.

O Expected saturation level $\sim 250 \mathrm{TeV}$.

See the CaloCube project

Few results obtained with MC simulation based on GEANT4.

Particle.	Energy.	Effective acceptance	Energy resolution
Proton	$<=1 \mathrm{PeV}$	$>1 \mathrm{~m} 2 \mathrm{sr}$	$\sim 30 \%$
Electron	$<=10 \mathrm{TeV}$	$\sim 2 \mathrm{~m} 2 \mathrm{sr}$	$\sim 2 \%$

Fraction of energy deposited by 10 TeV electrons: energy resolution $\sim 2 \%$

Nuclei @ 10 TeV : energy resolution vs effective GF.

Beam test results confirms the MC expected performance. Here few examples:

Prototype made by $5 \times 5 \times 20$ LYSO cubes read-out with the WLSIsCMOS system was tested at the CERN SPS.

The PD-HIDRA system was tested with a prototype made by hundreds of $\mathrm{CsI}(\mathrm{Tl})$ cubic
 crystals.

