Compact binary millisecond pulsars and the positron excess

Manu Linares (GAA@UPC & IEEC, Barcelona)

Michael Kachelriess (NTNU, Trondheim)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Compact Binary Millisecond Pulsars

A growing, nearby population of millisecond pulsars

"Spiders" (blackwidows, BWs; redbacks, RBs):

Millisecond pulsar

(wind, γ -rays, spin-down luminosity: $L_{sd} \sim 10^{34}$ - 10^{35} erg/s)

- Binary, compact orbit ($P_{orb} \le 1 \text{ day}$; a ~ R_{Sun})
- Non/semi-degenerate companion star (low/very-low mass, RBs / BWs: ~0.1 / 0.01 M_{Sun})
- •Accreting past: maximum neutron star mass (van Kerkwijk+11, Linares+18)
- •Transitional MSPs: disk-wind-magnetosphere (Archibald+09, Papitto+13)
- •Evolution: link with low-mass X-ray binaries (Chen+13, Benvenuto+12)
- •Intra-binary shock: particle accel., cosmic rays (Bogdanov+11, Venter+15, Linares & Kachelriess 2021)

M. Linares, ICRC, 2021-07-15

A Spider Revolution

A booming field thanks to Fermi-LAT driven discoveries

M. Linares, ICRC, 2021-07-15

A Spider Revolution

A booming field thanks to Fermi-LAT driven discoveries

Positrons from Pulsars

Natural electron-positron sources

 \rightarrow Contribution from spiders?

Spiders in the Galaxy

From the tip to the size of the iceberg

Updated catalog: 52 known spiders (24 in Venter+15)

Exp. scale height: z_e = 0.4+/-0.1 kpc (bias against z→0 corrected; agree with LMXBs and MSPs; Grimm+02,Cordes+97,Story+07)

20-50 "hidden" spiders ($|z| \le 0.5$ kpc)

2-3 "hidden nearby" spiders (d<1kpc) close to the plane ($|\ell|$ <5°)

→ Total: 2-7 thousand spiders:

we simulate 5000 additional Spiders

M. Linares, ICRC, 2021-07-15

Positrons from Spiders

A third built-in accelerator

E_{min} = 1-50 GeV Power law index ~3

E_{top} = 1-10 TeV Power law index ~2 Steady CR sources (Gyr >> diffusion)

Intrabinary Shock Reacceleration

A simple self-consistent model of the "tertiary" pair spectra

Parameters:

• **E**_{min}: minimum pair energy after shock reacceleration (1-50 GeV)

• Ω_1 : fraction of PSR sky covered by the shock (25-100% = pairs intercepted)

• f_w : fraction of the intercepted PSR wind that launches companion's wind (10-50%)

 σ : fraction of intercepted spin-down luminosity available for shock acceleration (0-30%)

Intrabinary Shock Reacceleration

Two regimes: power-limited vs. synchrotron-limited

2^{ary} (input) pair rate & luminosity scale with L_{SD} (Harding & Muslimov 2011)

Normalization

M. Linares, ICRC, 2021-07-15

 Post-shock pair spectrum (Fermi 1st order, strong non-rel. shock):

$$Q(E) = \frac{\mathrm{d}N}{\mathrm{d}E\,\mathrm{d}t} = KE^{-2}$$

• Maximum energy in the post-shock (tertiary) pair spectra (E_{top}) limited by:

-Synchrotron losses (cut E>E_{cut})

$$E_{\rm cut} = 68 \,\,\mathrm{TeV} \,\,\left(\frac{B_{\rm sh}}{\mathrm{G}}\right)^{-1/2} \,\,\sqrt{\frac{(\xi-1)}{\xi(\xi+1)}}$$

OR -Kinetic luminosity (accelerate to $E < E_{max}$)

$$E_{\rm max} = E_{\rm min} {\rm e}^{L'_{\rm p,max}/K}$$

→Cut-off at E_{top}=min(E_{max};E_{cut})~1-10 TeV

Results I: e⁺ injection

Injected and diffused positron spectra

 $L_{p} = 0.1-10\% L_{sd}$

 β =4x10⁻¹⁷ GeV/s, δ =1/3. Isotropic: D₀=3x10²⁸ cm²/s Anisotropic: D₁₀=2x10²⁶ cm²/s, D₁₀=5x10²⁸ cm²/s

Label	Nr.	Sample	E_{\min}	Ω_1	$f_{\rm w}$	σ
			(GeV)			
V15	24	known in 2015	30-1850	1.0	- (0?)	- ?
$\mathbf{A'}$	52	currently known	50	1.0	0.5	0.3
$A^{\prime\prime}$	5000	simulated outside $1\rm kpc$	50	1.0	0.5	0.3
$\mathbf{B'}$	52	currently known.	10	0.5	0.2	0.15
B''	5000	simulated outside $1\rm kpc$	10	0.5	0.2	0.15
\mathbf{C}'	52	currently known.	4	0.25	0.1	0.0
C''	5000	simulated outside $1\rm kpc$	4	0.25	0.1	0.0
D	1	plane perpendicular	50	1.0	0.5	0.3
Е	1	plane parallel	50	1.0	0.5	0.3

population

Results II: e⁺ flux

Comparison with AMS measurements

M. Linares, ICRC, 2021-07-15

if line of sight mostly parallel to Galactic B field

Results III: combined e⁺ e⁻ flux

Comparison with current measurements

Nearby spider along Galactic magnetic field lines:

combined electron positron flux agrees with current measurements

M. Linares, ICRC, 2021-07-15

Summary

- Spiders: a growing nearby population of e+/e- accelerators (10% of L_{sd} , up to ~10 TeV)
- Current population unlikely to be a major e+ contributor
- One single nearby spider could be a major e+ contributor

ournal of Cosmology and Astroparticle Physics

Cosmic ray positrons from compact binary millisecond pulsars

M. Linares a,b,c and M. Kachelrieß c

^aDepartament de Física, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, E-08019 Barcelona, Spain
^bInstitute of Space Studies of Catalonia (IEEC), E-08034 Barcelona, Spain
^cInstitutt for fysikk, NTNU, Trondheim, Norway
E-mail: manuel.linares@upc.edu, michael.kachelriess@ntnu.no

Received November 2, 2020 Accepted December 13, 2020 Published February 15, 2021