Characterizing the Isotropic Diffuse Gamma Ray flux (10–300 TeV) by the GRAPES-3 Experiment

Bhanu Prakash Pant

Indian Institute of Technology Jodhpur (On behalf of the GRAPES-3 collaboration)

PoS(ICRC2021)871

Isotropic Diffuse Gamma Rays

- By interaction of UHECRs with the CMB radiation via:
 - Pion photoproduction $(p + \gamma_{CMB} \rightarrow p + \pi^0)$
 - Bethe-Heitler pair production $(\mathsf{p} + \gamma_{\textit{CMB}} o \mathsf{p} + e^+ + e^-)$
- Secondaries further interact with the CMB radiation and undergo EM cascading.
- Final outcome is diffuse and isotropic flux of ultra-high-energy (UHE, ${\sim}100~{\rm TeV})$ $\gamma\text{-rays}.$

Why Study Diffuse Gamma-Rays?

- Direct measurement of UHECRs is difficult:
 - Being charged get deflected by interstellar magnetic fields.
 - Extreme low flux (1 particle km⁻² yr⁻¹).
- Possible probing through UHE γ -rays study.
- Provides significant information about sites of origin and acceleration mechanism.

GRAPES-3 Experiment

- Extensive air shower array at Ooty, India.
- 400 plastic scintillators over 25,000 m² area.
- Large area tracking muon telescope (560 m²).

Figure: Schematic view of GRAPES-3 array

Gamma Hadron Discrimination

- Lesser muons in Gamma as in Hadronic showers.
- Showers with zero muons are considered as gamma-like (muon-poor).
- Muon telescope helps in efficiently rejecting charged cosmic ray background.

Gamma Selection Efficiency

- CORSIKA (ver 7.4) simulation is done for γ primaries.
- Selection efficiency $(\epsilon_{\gamma}) = \frac{N_{\mu=0}}{N_{tot}}$
- Calculated for each size bin and radial bin of 5 m from the muon telescope.

Figure: Variation of Gamma-ray selection efficiency with energy.

Data Selection

- One year : January 2014 December 2014.
- Quality cuts:
 - Reconstructed cores must lie inside the fiducial area.
 - Shower age restricted to $0.12 \le s \le 1.8$.
 - Zenith angle $< 25^{\circ}$.

Upper limit of I_{γ}/I_{CR}

$$I_{\gamma}/I_{CR} \le \frac{N_{90\% C.L.}^{\mu=0}}{N_{tot}} \frac{1}{\epsilon_{\gamma}} \frac{1}{1 - n_{chance}}$$
(1)

• Integral flux for different threshold values of shower size and radial distance of 30 m from the muon telescope is calculated.

Plot of Upper limit of I_{γ}/I_{CR}

ICRC 2021 session details

- Date and time (Berlin) of ZOOM-Meeting : 16 July 2021 18:00
- Presenter-forum number: 221

Thank You!