The Baikal-GVD neutrino telescope:

search for high-energy cascades

Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration ICRC2021, July 16, 2021

Baikal-GVD construction status and schedule

Status 2021: 8 clusters, 3 laser stations, experimental

Effective volume 2021: 0.40 km³ (cascade mode E>100 TeV)

1

Cascades detection with GVD Cluster

High energy cascades (data and MC)

Data from 2019-2020, livetime: 2915 days (in terms of one cluster)

MC atmospheric muons - Corsika 7.74, Sybill 2.3c, protons, E_p>100 TeV

Thanks to Jakob van Santen for modification of DYNSTACK CORSIKA.

72 events with E > 40 TeV and N_{hit} > 19

10 events with E > 100 TeV and N_{hit} >19: Energy distribution One upgoing cascade: E ≈ 91 TeV Cosine of zenith angle

Preliminary!

Final selection requirements:

Preliminary!

(N _{Type_2} = 0,
$$E_{rec} \ge 60$$
 TeV) or (N _{Type_2} = 1, $E_{rec} \ge 100$ TeV)

7 data events have been selected.
4 events are expected from atm. muons
5 events are expected from E^{-2.46} astrophys. flux with IC normalization

Cumulative distributions of data and events from atm. muons and astrophys. flux after final cuts

Preliminary!

Parameters of 10 selected events (2018-2020)

	E, TeV	θ _{z,} degree	φ, degree	R.A.	Dec
GVD2018_354_N	105	37	331	118.2	72.5
GVD2018_383_N	115	73	112	35.4	1.1
GVD2018_656_N	398	64	347	55.6	62.4
GVD2019_112_N	1200	61	329	217.7	57.6
GVD2019_114_N	91	109	92	45.1	-16.7
GVD2019_663_N	83	50	276	163.6	34.2
GVD2019_153_N	129	50	321	33.7	61.4
GVD2020_175_N	110	71	185	295.3	-18.9
GVD2020_332_N	74	92	9	223.0	35.4
GVD2020_399_N	246	57	49	131.9	50.2

GVD_2019_112_N

Preliminary

Energy E = 1200 TeV (\pm 30%); distance from central string r = 91 m; Zenith angle = 61°

Preliminary!

Two close events at distance 10.3°: GVD_2018_656_N & GVD_2019_153_N

LSI +61 303 and two events 75 70 65 (.) Declination (0 151+61 55 50 10 70 60 50 40 30 20 Right Ascension (°)

LSI +61 303 – at 3.1° and 7.4° from GVD_2019_153_N and GVD_2018_656_N

LSI +61 303 – γ -ray active microquasar

Using PSFs of all 10 events chance probability to observe such configuration was estimated: $p-value = 0.007 \text{ or } 2.7 \sigma ! (conservative, preliminary!!!)$

Radio-loud blazars - promising neutrino sources

A. Plavin et al., ApJ 894, 101 (2020)A. Plavin et al., ApJ 908, 157 (2021)

GVD2019_1_114_N Radio blazar J0301-1812

Sky plot of radio-bright blazars nearby neutrino event

Light curves of J0301-1812 measured by RATAN-600

Sky plot of radio-bright blazars nearby neutrino event

Light curves of J1938-1749 measured by OVRO

Conclusion

➢ Baikal-GVD is now the largest neutrino telescope in the Northern Hemisphere: 0.4 km³ and growing

- ➢ Modular structure of GVD design allows a search for HE neutrinos and multimessenger studies at the early phases of array construction.
- Ten cascade-like events were selected from 2018-2020 data sample first candidates for events from astrophysical neutrinos