Studies of Gamma-Ray Shower Reconstruction Using Deep Learning

Tomas Bylund¹ Gašper Kukec Mezek ¹ Mohanraj Senniappan ¹ Yvonne Becherini ¹ Michael Punch ^{1,2} Satyendra Thoudam ³ Jean-Pierre Ernenwein ⁴

¹Linnaeus University, Sweden

²Université de Paris, CNRS, Astroparticule et Cosmologie, France

³Aix Marseille Univ, CNRS/IN2P3, CPPM, France

⁴Khalifa University, United Arab Emirates

July 5, 2021

ALTO Gamma-Ray Shower Reconstruction

- CoMET R&D project is dedicated for observing very high energy gamma-rays (200 GeV - 50 TeV), optimising for extragalactic sources
- CoMET has two parts: atmospheric Cherenkov Light Collectors (CLiC) and a Particle detector array with 1242 detector units (water-Cherenkov and scintillator) called ALTO
- Here we only used the ALTO detectors

Sweden

Reconstruction with convolutional neural nets

- Investigate power of Convolutional Neural Networks (CNN) to reconstruct Energy and depth of shower maximum X_{max}
- Use only log total number of physical photo-electrons seen per detector, log₁₀ N_e
- Convert from complicated detector geometry to square image for CNN to use with oversampling, events become 285×285 pixel images

Oversampling converted event

Results: Energy

- Energy successfully reconstructed with straightforward CNN layout
- However, performance, as measured by the RMS of log₁₀(*E*_{reco}/*E*_{truth}) only equivalent to traditional machine learning approach
- Tried data augmentation to address unbalance of samples at low energy, no importance for performance, but reconstruction quality slightly improved vs no augmentation

Results: shower maximum X_{max}

- The CNN achieves better RMS of log₁₀(X_{reco}/X_{truth}) than traditional machine learning
- Balancing the training set with respect to Energy did not help with performance
- Absolute performance was modest, but potential to improve it further (see PoS ICRC2019, 270)
- At its current performance predicted X_{max} could help with improving energy performance

Linnæus University

Thank you for your attention