

#### Neutron monitor altitudedependent yield function and its application to an analysis of neutron-monitor data

Alexander Mishev<sup>a</sup>, Sergey Koldobskiy<sup>a,b</sup>, Gennady Kovaltsov<sup>c</sup>, Agnieszka Gil<sup>d</sup> and Ilya Usoskin<sup>a</sup>

<sup>a</sup> University of Oulu, Finland <sup>b</sup> National Research Nuclear University MEPhI, Moscow, Russia <sup>C</sup> Ioffe Physical-Technical Institute, St. Petersburg, Russia <sup>d</sup> Siedlce University, Institute of Mathematics, Poland

# Neutron monitor yield function verification



#### New computations of neutron monitor yield function



$$\ln\left(\frac{Y(h,E)}{Y(1,000,E)}\right) = A(R) \cdot (1,000-h)^2 + B(R) \cdot (1,000-h)$$

$$\ln(Y(1,000, E)) = \sum_{l=0}^{3} a_{l} (\ln(R))^{l},$$
$$A(R) \text{ (or } B(R)) = \sum_{l=0}^{5} b_{l} (\ln(R))^{l},$$



## Testing new yield function against the experimental results



| Name              | Source | $P_{\rm c}~({\rm GV})$ | $p_0 (\mathrm{mb})$ | п  | ĸ     | Stability     |
|-------------------|--------|------------------------|---------------------|----|-------|---------------|
| AATB              | 1      | 5.95                   | 675                 | 79 | 1.338 | J, T(0.7)     |
| APTY <sup>a</sup> | 3      | 0.45                   | 1,010               | 79 | 1.193 | Stable        |
| ATHN              | 1      | 8.53                   | 980                 | 79 | 1.152 | Stable        |
| BJNG              | 2      | 8.8                    | 1,000               | 46 | 1.098 | T(-0.3)       |
| BKSN              | 2      | 5.6                    | 820                 | 76 | 1.149 | J             |
| BRBG              | 2      | 0.0                    | 1,000               | 79 | 1.365 | T(-0.5)       |
| CALM              | 1      | 6.95                   | 1,000               | 64 | 2.124 | Stable        |
| DJON              | 1      | 11.22                  | 1,001.3             | 68 | 1.019 | Stable        |
| DRBS              | 1      | 3.34                   | 986.6               | 72 | 1.098 | J             |
| ESOI              | 2      | 10.2                   | 800                 | 75 | 1.053 | S(>5%)        |
| FSMT              | 1      | 0.3                    | 1,013               | 79 | 0.947 | Stable, S(2%) |
| HRMS              | 1      | 4.44                   | 1,013.25            | 79 | 1.045 | Stable        |
| INVK              | 1      | 0.3                    | 1,013               | 79 | 1.059 | Stable        |
| IRK2              | 2      | 3.13                   | 800                 | 75 | 1.508 | J             |
| IRK3              | 2      | 3.51                   | 715                 | 60 | 1.294 | J             |
| JUN1              | 1      | 4.49                   | 642.614             | 79 | 1.184 | J, S(10%)     |
| KERG              | 1      | 1.14                   | 1,000               | 77 | 0.998 | Stable        |
| KIEL <sup>b</sup> | 1      | 2.21                   | 1,006.7             | 79 | 1.184 | J, T(-0.3)    |
| LMKS              | 2      | 3.84                   | 733.3               | 75 | 1.454 | J, T(-0.5)    |
| MCMD              | 1      | 0.3                    | 973.25              | 75 | 1.304 | Stable        |
| MGDN              | 1      | 1.78                   | 982.2               | 54 | 1.423 | J, T(0.3)     |
| MOSC              | 1      | 2.13                   | 1,000               | 79 | 1.197 | Stable        |
| MRNY              | 2      | 0.03                   | 1,013               | 79 | 1.118 | T(0.3)        |
| MWSN              | 2      | 0.22                   | 990                 | 78 | 0.921 | Stable        |
| MXCO              | 2      | 8.28                   | 778.58              | 79 | 1.135 | Stable        |
| NAIN              | 1      | 0.3                    | 1,013               | 79 | 0.952 | Stable        |
| NANM              | 1      | 7.1                    | 802                 | 76 | 1.512 | J, T(1.0)     |
| NRLK              | 2      | 0.45                   | 1,005               | 66 | 1.227 | J, T(0.3)     |
| NVBK              | 2      | 2.4                    | 995                 | 79 | 0.977 | T(-0.4)       |
| NWRK              | 1      | 2.4                    | 1,013.3             | 79 | 1.039 | Stable        |
| OULU              | 4      | 0.62                   | 1,000               | 79 | 1.047 | Stable        |
| PSNM              | 2      | 16.8                   | 750.479             | 79 | 0.883 | Stable        |
| PWNK              | 1      | 0.3                    | 1,013.3             | 79 | 0.943 | Stable        |
| ROME              | 1      | 6.27                   | 1,009.25            | 63 | 1.290 | Stable        |
| SNAE              | 1      | 0.73                   | 880                 | 79 | 1.072 | Stable        |
| SOPO              | 1      | 0.1                    | 680                 | 79 | 1.247 | Stable        |
| TERA              | 1      | 0.0                    | 986.42              | 79 | 1.063 | Stable        |
| THUL              | 1      | 0.3                    | 1,005               | 79 | 1.759 | Stable        |
| TIBT              | 1      | 13.44                  | 607                 | 66 | 0.828 | Stable        |
| TSMB              | 1      | 8.95                   | 880                 | 73 | 1.120 | Stable        |
| TXBY              | 2      | 0.48                   | 1,000               | 79 | 1.360 | S(3%), J      |
| YKTK              | 2      | 1.37                   | 1,000               | 75 | 1.303 | T(-0.6)       |

### Conclusion

- Yield function Mishev et al. 2013, verified with AMS-02 experimental data, was expanded to different atmospheric depths;
- Expected neutron monitor responses were calculated using this yield function for the period 2011 – 2017 and compared with real data for all neutron monitors having data for this period of time;
- About half of neutron monitors appear to be stable while the other part suffers instabilities in the data such as trends and sudden jumps;

https://doi.org/10.1029/2019JA027433 https://doi.org/10.1029/2018JA026340