Baikal-GVD: status and perspectives

Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration ICRC2021, Berlin, July 12, 2021

Baikal-GVD collaboration

10 organisations from 5 countries, ~70 collaboration members

- Institute for Nuclear Research RAS (Moscow)
- Joint Institute for Nuclear Research (Dubna)
- Irkutsk State University (Irkutsk)
- Skobeltsyn Institute for Nuclear Physics MSU (Moscow)
- Nizhny Novgorod State Technical University (Nizhny Novgorod)
- Saint-Petersburg State Marine Technical University (Saint-Petersburg)
- Institute of Experimental and Applied Physics, Czech Technical University (Prague, Czech Republic)
- EvoLogics (Berlin, Germany)
- Comenius University (Bratislava, Slovakia)
- Krakow Institue for Nuclear Research (Krakow, Poland)

Baikal-GVD site

Telescope is located ~4 km away from shore

Stable ice cover for 6-8 weeks in February – April: detector deployment and maintenance.

Baikal water : Absorption length: $\sim 22-24$ m Scattering length: $\sim 30-50$ m

Moderately low background 15–40 kHz: PMT R7081-100 Ø10"

The constant depth of the lake (1366-1367 m)

Gigaton Volume Detector at Lake Baikal

Baikal-GVD (Gigaton Volume Detector) is a cubic-kilometer scale underwater neutrino detector being constructed in Lake Baikal

Baikal-GVD optical module

Section of OMs

40

35 30

25

20

15 10

Section

- 12 OMs, 15 m spacing, All PMTs look downward.
- 2 acoustic modules (AM) of the positioning system.

Section control module

- ADC12 ch, 200 MHz sampling; pulse form measuring.
- Trigger logic, events forming, data filtration.
- Data transmission: shDSL ethernet extender: 5.7 Mbit

Pulse form interpolation provides accuracy of the pulse time estimation ~ 0.3 ns.

time codes, 5ns

Cluster

Cluster: 288 OMs

- 24 Sections on 8 strings,
- Cluster DAQ center
- Shore cable: 6 7 km
- Depths from 750 to 1275 m

Cluster DAQ

- Trigger: 1.5 & 4 pe of adjacent channels.
- Maximum trigger rate: ~200 Hz.
- Data transferring: shDSL Ethernet extenders: 5.7 Mbit.
- Inter-section synchronization by common trigger: ~2 ns accuracy.

Time difference for Laser3 events on CI5 Ch 236-56	Statis	Statistics	
³⁰ Distribution on ∆t between	Entries Mean Std Dev	2161 26.84 0.431	
channels of two sections:		-	
RMS = 2.2 ns		-	
10 (expected: 2.04 ns)		-	
5	1		
<u>0</u> <u>50</u> <u>-40</u> <u>-30</u> <u>-20</u> <u>-10</u> <u>0</u> <u>10</u> <u>20</u>	30 40	50	

Cluster

center

Cluster

Shore hybrid cable,

6 optical fibers,

6 - 7 km length

Calibration devices

Section calibration: 2 LEDs in each OM, 470 nm, 1 - 10⁸ ph., 5 ns.
String calibration: LED beacons in 12 OMs of the cluster.
Cluster calibration: 2 Lasers per station, 532 nm, 10¹² - 10¹⁵ ph., 1 ns.

Calibration accuracy ~ 2 ns

Acoustic positioning system

OM drift can reach tens of meters, depends on season and elevation.

OM coordinates are acquired via an acoustic positioning system.

It consists of a network of acoustic modems (AMs) installed along GVD strings 4 AMs per string in a standard configuration.

OM coordinates are obtained by interpolating AM coordinates, error < 0.2m,

Baikal-GVD construction status and schedule

Status 2021: 8 clusters, 3 laser stations, experimental

Deployment schedule

Year	Number of clusters	Number of OMs
2016	1	288
2017	2	576
2018	3	864
2019	5	1440
2020	7	2016
2021	8	2304
2022	10	2880
2023	12	3456
2024	14	4032

Effective volume 2021: 0.40 km³ (cascade mode)

Selected results

- > Muons detection mode: atmospheric neutrinos
- Multimessenger studies
- Cascades detection mode: HE cascades

Track analysis

Present status: technique for neutrino events selecting and reconstructing is currently being developed.

Reconstruction: noise hit suppression and fit track with quality function:

$$Q(x, y, z, \theta, \phi) = \chi_t^2 + Q_r$$

Data sample: data taken between Apr 1 and Jun 30, 2019; 5 clusters.

Event selection: 8 hit OMs on at least two detector strings;

Muon neutrino : single-cluster analysis

- 9.8 million reconstructed events for the combined dataset from the 5 clusters.
- Single-cluster equivalent live time 323 days.

Multimessenger studies (talk ID946 by O.Suvorova)

BAIKAL alerts

Since Sept 2020: data processing with a delay of several hours. Nearest plans: HE alerts processing with delay less than tens of minutes.

ANTARES alerts

Since the end of Dec 2018 Baikal-GVD follows ANTARES alerts. Processed 48 alerts, among which 3 possible coincidences were found in cascade mode within 5° and dT ± 1 day and are under investigation with ANTARES.

ICECUBE alerts

Starting Sept 2020 Baikal-GVD follows IC alerts (GCN), 22 alerts.

Upper limits at 90% c.l. on the neutrino fluence: $\sim 1 \div 2$ GeV cm⁻² for energy range 1TeV– 10PeV.

E⁻² spectral behavior; equal fluence in all flavors

Cascades detection with GVD Cluster

High energy cascades (data and MC)

Preliminary!

Data from 2019-2020, livetime: 2915 days (in terms of one cluster)

MC atmospheric muons - Corsika 7.74, Sybill 2.3c, protons, E_p>100 TeV

Thanks to Jakob van Santen for modification of DYNSTACK CORSIKA.

72 events with E > 40 TeV and N_{hit} > 19

Final selection requirements:

Preliminary!

(N
$$_{Type_2} = 0, E_{rec} \ge 60 \text{ TeV}$$
) or (N $_{Type_2} = 1, E_{rec} \ge 100 \text{ TeV}$)

7 data events have been selected.
4 events are expected from atm. muons
5 events are expected from E^{-2.46} astrophys. flux with IC normalization

Cumulative distributions of data and events from atm. muons and astrophys. flux after final cuts

Preliminary!

Parameters of 10 selected events (2018-2020)

	E, TeV	θ _{z,} degree	φ, degree	R.A.	Dec
GVD2018_354_N	105	37	331	118.2	72.5
GVD2018_383_N	115	73	112	35.4	1.1
GVD2018_656_N	398	64	347	55.6	62.4
GVD2019_112_N	1200	61	329	217.7	57.6
GVD2019_114_N	91	109	92	45.1	-16.7
GVD2019_663_N	83	50	276	163.6	34.2
GVD2019_153_N	129	50	321	33.7	61.4
GVD2020_175_N	110	71	185	295.3	-18.9
GVD2020_332_N	74	92	9	223.0	35.4
GVD2020_399_N	246	57	49	131.9	50.2

GVD_2019_112_N

Preliminary

Energy E = 1200 TeV (\pm 30%); distance from central string r = 91 m; Zenith angle = 61°

Preliminary!

Two close events at distance 10.3°: GVD_2018_656_N & GVD_2019_153_N

LSI +61 303 and two events

30

Right Ascension (°)

20

10

70

60

LSI +61 303 – at 3.1° and 7.4° from GVD_2019_153_N and GVD_2018_656_N

LSI +61 303 – γ -ray active microquasar

Using PSFs of all 10 events chance probability to observe such configuration was estimated: $p-value = 0.007 \text{ or } 2.7 \sigma ! (conservative, preliminary!!!)$

GVD_2019_663

Mrk 421 brightest source

GVD2019_1_114_N

Preliminary

The first clear cascade event from the interaction of an upward moving electron- or tau-neutrino at the 100 TeV

Contained event Reconstructed energy E = (91 ± 11) TeV Zenith angle $\theta_z = 109^\circ$

Sky plot of γ-ray sources (D.Semikoz, A.Neronov)

91.2 T₃B (from below) no good known sources in 3 degrees PKS 0302-16 unknown type of source PMN J0301-1652 unknown type of source

Radio-loud blazars - promising neutrino sources

A. Plavin et al., ApJ 894, 101 (2020)A. Plavin et al., ApJ 908, 157 (2021)

GVD2019_1_114_N Radio blazar J0301-1812

Sky plot of radio-bright blazars nearby neutrino event

Light curves of J0301-1812 measured by RATAN-600

Sky plot of radio-bright blazars nearby neutrino event

Light curves of J1938-1749 measured by OVRO

ACKNOWLEDGMENTS

We thank Y. Kovalev, A. Neronov, A. Plavin, D. Semikoz and S. Troitsky who perform comparing of our results with astrophysical data.

GVD 2020 and extention

Conclusion

➢ Baikal-GVD is now the largest neutrino telescope in the Northern Hemisphere: 0.4 km³ and growing

➢ Modular structure of GVD design allows a search for HE neutrinos and multimessenger studies at the early phases of array construction.

Observations of atmospheric neutrinos by Baikal-GVD agree with expectations; first astrophysics neutrino candidate events have been selected Deployment rate – 2 clusters/year

33

GVD (1 km³) in 2026