Sterile neutrino prospects with atmospheric neutrinos in DUNE

Austin Schneider | Barbara Skrzypek | Carlos Argüelles | Janet Conrad

Atmospheric neutrinos

Through-going atmospheric neutrinos

• Initial look at through-going atmospheric muons/neutrinos in DUNE

3

- Muons from NuMu CC DIS interactions outside fiducial volume
- Effective volume ~10x the fiducial volume
- DUNE far detector data will be available before the beam is online

Radiative losses

- Cannot measure incoming MIP energy
- Need radiative energy losses
- Above ~100 GeV may be measurable in LArTPC
- IceCube cannot measure energy in this regime
- Sweet spot for DUNE through-going muons

IceCube

IceCube

DeepCore

Muons in DUNE

Muons expected in DUNE

- ~14 starting muons per year per module above 100 GeV
- Assume 10% energy resolution for contained vertex neutrinos*
- ~230 upgoing through-going muons per year per module above 100 GeV
- Assume 20% energy resolution for through-going muons*
- Will show results for 9 module years as an example (~5 years of running)

Sterile neutrinos

Sterile neutrino signature

- Matter effects produce resonance in muon antineutrino disappearance
- Produces a sharp feature in energy and zenith angle!
- $\Delta m_{41}^2 = 1 \text{ eV}^2$, $\sin^2(2\theta_{24}) = 0.1$:

Sterile neutrino signature and IceCube result

- Search for 3+1 matter resonance
- Scan in $\sin^2(2\theta_{24})$ and Δm^2
- θ_{34} is fixed to zero

https://doi.org/10.1103/PhysRevD.102.052009

Effect of θ_{34}

3+1 signature in DUNE

- Prevalent in DUNE atmospheric neutrino energy regime
- Figure: (3+1) neutrino expectation over 3 neutrino expectation
 - Left: $\theta_{34}=0$
 - Right: θ_{34} =0.3
- Detector resolution preserves the strength of the oscillation effect

Sensitivity to 3+1 scenario

Sensitivity to 3+1 scenario

Other opportunities

- Recent workshop explored BSM synergies in atmospheric neutrinos between IceCube and DUNE
- Workshop summary: <u>https://harvard-neutrinos.rc.fas.harvard.edu/event/5/sessions/4/#20210618</u>

14

- Promising topics to explore:
 - Cross section and inelasticity measurements in the gap region
 - Z-prime model constraints
 - Sidereal Lorentz violation
 - Heavy neutral leptons
 - Millicharged particles
 - Staus
 - Boosted dark matter
 - Unitarity tests

IceDUNE

JUNE 16-18, 2021

Summary

- Through-going muons provide ~10x effective volume boost
- DUNE far detector is sensitive to a challenging energy regime
- Sensitivity to 3+1 is complementary to other experiments
- More to see with other BSM physics scenarios

Next steps:

- Developing reconstruction techniques for muons in LArTPCs
- Exploring new scenarios
- Complementarity with other neutrino experiments

This work: <u>https://arxiv.org/abs/2106.01508</u>

Bonus slides

Lorentz violation

• Add higher dimensional operators to effective Hamiltonian

$$H \sim \frac{m^2}{2E} + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)} \cdot \cdot$$

- Causes neutrino disappearance
- Focus on mu/tau mixing ⇒ muon neutrino and muon antineutrino disappearance
- Parameterization:

• Strength of LV
$$\rho^{(3)} = \sqrt{(\mathring{a}_{\mu\mu}^{(3)})^2 + (\operatorname{Re}[\mathring{a}_{\mu\tau}^{(3)}])^2 + (\operatorname{Im}[\mathring{a}_{\mu\tau}^{(3)}])^2}$$

• Fraction on the diagonal

$$(\mathring{a}^{(3)}_{\mu\mu}/
ho^{(3)})$$

$$\overset{\circ}{a}^{(3)} = \begin{pmatrix} a_{ee} & a_{e\mu} & a_{e\tau} \\ a_{e\mu}^* & \underline{a_{\mu\mu}} & \underline{a_{\mu\tau}} \\ a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau} \end{pmatrix}$$

$$a_{\tau\tau} = -a_{ee} - a_{\mu\mu}$$

Lorentz violation dimension 3 sensitivity

- DUNE atmospheric neutrinos less sensitive to Lorentz violation strength
- More sensitive in the region of minimal flavor violation

- 9 module-years (first ~5 years of operation)
- 5% normalization uncertainty, 0.01 CR spectral uncertainty
- 3 neutrino oscillation parameters fixed
- Wilks' w/ 2 degrees of freedom

Analysis details/assumptions

- 1. 3 neutrino oscillation parameters fixed
- 2. Directional reconstruction error negligible
- 3. Energy resolution of muons is 10% and 20% for starting and through-going events respectively (log-normal distributed)
- 4. Simple model for rock
- 5. 14m x 58.2m x 12m liquid argon
- 6. 13.9m x 58.1m x 11.9m fiducial volume
- 7. H3a_SIBYLL23C conventional atmospheric flux (from nuflux [https://github.com/icecube/nuflux])
- 8. Only numu / numubar CC DIS final states assuming CSMS cross sections
- 9. Total interaction cross section from CSMS (CC + NC DIS)
- 10. Oscillation probability computed with tau regeneration and Glashow resonance
- 11. Oscillation probability computed on 1 GeV to 1 PeV 101 point log energy grid * 100 point cos zenith grid
- 12. Detector center at -1480m from surface (perhaps this should be the top or bottom of the detector?)
- 13. ~250,000 simulation events at final level
- 14. MC statistical errors accounted for via likelihood technique [https://austinschneider.github.io/MCLLH/]

Software details

- LeptonInjector for neutrino injection (actually using a custom modified version)
 - O [https://github.com/icecube/LeptonInjector]
- LeptonWeighter for weighting (actually using a python re-implementation: LWpy)
 - O [https://github.com/austinschneider/LWpy]
 - O [https://github.com/IceCubeOpenSource/LeptonWeighter/]
- nuSQuIDS for oscillation (some modifications for Lorentz violation)
 - O [https://github.com/austinschneider/nuSQuIDS_LV]
- PROPOSAL for muon propagation (modified for bug-fixes and extra material defs.)
 - O [https://github.com/austinschneider/PROPOSAL]
- Custom analysis software used for likelihood problem and nuisance weighting
 - [https://github.com/austinschneider/DUNEAtmo/]

Energy and zenith distribution

Muon energy losses in liquid argon

- Liquid argon density
 - **1.401 g/cm³**
- Total energy loss at 50 GeV
 - \circ 2 MeV cm² g⁻¹ * rho = 2.8 MeV/cm
- Radiative energy loss at 50 GeV
 - \circ 0.2 MeV cm² g⁻¹ * rho = 0.28 MeV/cm

