

Evolving Antennas for Ultra-High Energy Neutrino Detection

Julie Rolla The GENETIS Project

Ultra-High Energy Neutrino Astronomy

- Neutrinos are excellent cosmic messengers!
 - Point directly back to source

 Many UHE neutrino experiments utilize antennas to detect the Askaryan effect

[1] https://lecospa.ntu.edu.tw/zh/experiment-zh/experiment-i-ultra-high-energy-neutrinos

• Designed to mimic natural selection

- Generate initial population of possible solutions (individuals)
- Determine fitness of each individual
- Select individuals to form the next generation (tournament/roulette)
- Form next generation (crossover/ mutation/reproduction)
- Repeat!

First GENETIS Design

- First goal is to generate an asymmetric bicone antenna
 - Six genes for each individual: length, inner radius, and opening angle for each cone
- Compare designs against VPol antennas in ARA
 - ARA size constraints implemented
 - AraSim effective volume is the fitness score

• 50 individuals evolved over 15 generations

Large Asymmetric Run

Gain Pattern Evolution

- Evolve gain patterns for in-ice neutrino detection
- Allows us to quantify the maximum improvement possible
 - Without being concerned with antenna constraints

Gain Pattern Evolution

- Uses a sum of 13 azimuthally symmetric spherical harmonic functions to model the antenna response
- No need for XFdtd or antenna modeling

- Run time optimization
 - Antenna database for asymmetric bicone
- Add nonlinear bicone to full loop

• Obtain results for gain pattern evolution with more complex simulation software

- Apply to different experiment aspects
 - Including new geometries, array design, and triggering systems