Properties of Cosmic Helium Isotopes measured by the Alpha Magnetic Spectrometer

ICRC 2021 Virtual Conference

F. Giovacchini on behalf of the AMS-02 collaboration ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

> 37th International Cosmic Ray Conference 12–23 July 2021

Helium Isotopes on Cosmic Rays

Precise measurements of primaries and secondary elemental fluxes by AMS \rightarrow important information to understand the origin and the propagation of Cosmic Rays

AMS nuclei @ ICRC 2021: H.Gast, #1008: He,C,O,Li,Be,B Q.Yan, #707: F A.Oliva, #763: Ne, Mg, Si C. Zhang, #743: Na Z. Liu, #893: Al Y.Chen : Fe

More detailed insight from isotopic composition (see L.Derome #992: Li, Be isotopes; E.Bueno #887: D)

Helium are the second most abundant nuclei in CRs, consisting of the two isotopes:
⁴He (primary cosmic rays) are mostly produced and accelerated in astrophysical sources;
³He (secondary cosmic rays) mostly produced by fragmentation of primary ⁴He with ISM

 The small cross section of He with respect to heavier nuclei, allows ³He/⁴He to probe the properties of diffusion at larger distances than any other sec. to prim. ratio (like B/C, B/O).

He identification with AMS

He isotopes identification with AMS

He isotopes identification with AMS

β Measurement: TOF, RICH

Top-of the-Instrument correction

Contamination in ³He from ⁴He \rightarrow ³He

Since ³He and ³H production cross sections in ⁴He interactions are expected to be similar and constant above ~0.2 GeV/n: the contamination due to ${}^{4}\text{He} \rightarrow {}^{3}\text{He}$ fragmentation is estimated from the ${}^{4}\text{He} \rightarrow {}^{3}\text{H}$

Validate simulation with direct measurement: $He \rightarrow p$, ²H, ³H

Contamination < 10% of the ³He sample with associated systematic error smaller than 1% for ³He flux. ICRC 2021 Virtual Conference

He isotopes identification with AMS

To identify the helium isotopes:

-Select narrow velocity bins compared with beta resolution (0.2 $\Delta\beta$);

 Unfold the momentum distribution, within the beta bin, using the tracker resolution function to get ³He and ⁴He peaks and count events on TOP of AMS;

- Fold back the results and Fit to the data.

ICRC 2021 Virtual Conference

³He and ⁴He and ratio time variation

ICRC 2021 Virtual Conference

Helium Isotopes Flux vs R

The ³He and ⁴He fluxes averaged in time as function of rigidity

Helium Isotopes ratio vs R

The time-averaged ³He/⁴He flux ratio as function of rigidity [2.1-15GV]

Spectral Index of Helium Isotopes ratio

Helium Isotopes vs Ekin

The analysis has been also performed vs E_k AMS measurement togheter with previous experiments

Summary

- AMS has performed a precision measurements of the cosmic-ray ³He and ⁴He fluxes and their ratio with rigidity from 1.9 GV to 15 GV for ³He, from 2.1 GV to 21 GV for ⁴He and from 2.1 GV to 15 GV for ³He/⁴He, based on 100 million ⁴He and 18 million ³He nuclei.
- Below 4 GV the ³He/⁴He flux ratio shows a long-term time dependence.
- Above 4 GV the ³He/⁴He flux ratio was found to be time independent and its rigidity dependence is well described by a single power law (C R^{Δ}) with Δ = -0.294 ± 0.004.
- The measured ³He/⁴He flux ratio power law spectral index is in agreement with the one measured at high rigidity for the B/O and B/C ratio.