#### Measurement of interplanetary magnetic field in short period using the cosmic-ray Sun shadow measured by LHAASO

#### Nan Yuncheng

Shandong University & Institute of High Energy Physics

Chen Songzhan Institute of High Energy Physics

Feng Cunfeng Shandong University

on behalf of the LHAASO collaboration

37th ICRC, 2021, Berlin, Germany, Online

# Outline

- 1. Introduction
- 2. WCDA-1's Sun shadow
- 3. Simulation of Sun shadow
- 4. Comparison and result of the IMF
- 5. Summary

# **1.Introduction**

## Sun shadow



### **ARGO-YBJ's Sun shadow**



ApJ, 729:113 (2011)

ARGO-YBJ estimated the structure of the IMF 1.6 days ahead at 5TeV by folding ~1 year's data!

# 2.WCDA-1's Sun shadow

### LHAASO-WCDA-1:

LHAASO at 4410m altitude on Haizi Mountain, China



- Observation time: Apr 2019~ Mar 2020 ~70σ Sun shadow
- Data selection: CR2210 (20190727-0822) Nfit: 100-800 (6.2TeV)
- Background estimation method: Direct integration method

Water Cherenkov Detector Array

#### Moon shadow

#### Significance map **Pointing accuracy** 0.5 S = -76 σ data $\chi^2$ / ndf 0.4 18.91/8 RA=-0.45° Dec=0.05° -10 Displacement(deg) in N-S 0.3 data:fit data:p<sub>0</sub> -0.005579 ± 0.008706 -20 0.2 0.1 Dec (deg) -30 40 -0.1 -50 -0.2 -0.3 -60 -0.01° ± 0.01° -0.4 70 -0.5 10<sup>2</sup> 10<sup>3</sup> Nfit Ra (deg)

#### WCDA-1 has good pointing accuracy in N-S!



## **Displacement in N-S**



## Method

#### IMF: parker model



# **3.Simulation of Sun shadow**

## **Simulation strategy**



## Simulation of the cosmic ray

Corsika + G4WCDA - > Noise&digitization -> Reconstruction:



## **Simulation of Sun shadow**



B0=0.1Gauss,  $\delta=0^{\circ}$ 

#### **Comparison between data and simulation**



• Fitting method:

$$\chi^{2} = \sum_{i=1}^{12} \frac{\left(D_{sim}^{i}(B_{0},\delta) - D_{obs}^{i}\right)^{2}}{\sigma_{total}^{2}}$$

• Fitting result:

 $\chi 2 = 4.25$  $\delta = 44.98^{\circ}$ B0 = 0.20Gauss

# 4. Results of the IMF



The structures of results are in agreement with ONMI's at 1AU.

This is the first time to measure the IMF using Sun shadow in a short period!

# 5. Summary

• From our analysis:

(1) We have constructed a complete data analysis and simulation program of Sun shadow.

(2) We measured the structures of By of the IMF in CR2220 by WCDA-1's Sun shadow preliminarily.

- In the future:
  - (1) The results of this work will be further explored.

(2) Learning more about the stable and eruptible MF by WCDA and KM2A(LHAASO).