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Motivation and project relevance

Solar atmospheric neutrinos are produced by cosmic rays interacting with matter in the
sun’s atmosphere, sharing a production mechanism with solar gamma rays

Relevant to solar dark matter searches as an irreducible background

Remain one of the few naturally occurring high-energy neutrinos yet to be detected
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Solar atmospheric neutrino flux predictions
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Source: Arglelles, Wasseige, Fedynitch, Jones.

Soft energy spectrum, falls off like £°
Gamma ray flux measured to be higher during periods of decreased solar
activity, hinting at a higher neutrino flux during periods of solar minima

Background for solar atmospheric neutrino signal searches include conventional
atmospheric neutrinos and cosmic-ray muons




Event selection and its extensions
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Analysis method for HE selection

e [or our preliminary sensitivities, we calculate our probability density functions by
weighting MC simulation events with the expected flux, looking at the bivariate
distribution in 6 = [W, E].
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Probability density contours of expected signal (left) and background (right) events in
the high-energy event selection depending on angular distance from the Sun W and
reconstructed energy E in a circular region of interest of 5° around the sun.




Likelihood for HE event selection

e [o compute the sensitivity for high-energy data, we use an unbinned likelihood
method given by:

N
L(ns) = l_[ lnﬁspsig(éi; ¢sig) + (1 - nﬁs)pbkg(éi; ¢atm + ¢astr0)]
i=1

psig/pbkg PDFs of expected signal/background events,
N the total number of events in the events selection,

ng the number of signal events,

¢s/g the assumed signal flux model, and

¢ T P, the cOmbined background flux of conventional atmospheric and diffuse

astrophysical neutrinos
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Sensitivity for 9 years of HE selection

VH-

Sens. in units of model flux | Sens. at 1 TeV [GeV‘l cm™? s‘l]
Edsjo2017 * 2.61 1.72-1071
FIAW2017 ** 3.51 1.95- 10714

e \We calculate our sensitivity for all 9 years of data for a reference flux from
Edsjo2017 and FJAW2017 each using the Neyman method.

e Depending on flux model, resulting sensitivities are a factor of 2-4 larger than
model predictions

e Further improvements in event selection, likelihood method and

incorporation of the solar shadow are expected to result in further
improvements.

*Edsjo2017 is shorthand for the 2017 paper by J. Edsjd, J. Elevant, R. Enberg, and C. Niblaeus.
“*FJAW2017 is shorthand for the 2017 paper by C. Arguelles, G. de Wasseige, A. Fedynitch, and B. Jones. !



HE selection differential sensitivity

————— IceCube Sens. for FJAW2017 (2011-2020)
----- IceCube Sens. for '=3.0 (2011-2020)

10-71 e HAWC 95% C.L (2014-2017) [18]
- Fermi-LAT (Solar Min.) [12]
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Differential Sensitivity in half-decade energy bins for 9 years of data for a reference flux from FJAW2017 and for a
power law with '=3.0. Also shown are gamma-ray observations/limits from HAWC and Fermi-LAT. We omit showing
the sensitivity for our other reference flux from Edsjo2017 due to the high shape similarities between the two.
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To an all-flavor event selection
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Example of a ~200 GeV Example of a ~200 GeV
muon track electron cascade

e Previous event selection used only high-energy tracks from muon neutrinos
e [Extending to ~100 GeV regime includes events with poorer angular resolutions
o Natural extension for event selection to handle neutrinos of all flavors
o Neutrinos from the sun have time to oscillate, so we expect a flat flavor distribution at
Earth

o (Cascade signal:background ~10x higher than tracks 10



Current setup of ME selection

0. Pick events that medium-energy filter gives us

1. Cut on reconstructed zenith angle and reduced-log-likelihood of the track fits
(effective at filtering out atmospheric muon background)

2. Pass output from 1. to a Boosted Decision Tree trained to identify muon-like
events (“muBDT”). Current score separation shown in test-set distribution below
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Current sensitivities and next steps

Comparing sensitivities to FJAW model for various event selections

HE event selection 3.75
DeepCore LE selection 5.41
LE + HE 2.91

2.1. Optimize performance of uBDT

o DeepCore selection able to reduce background (muon) rate by factor 10
o Hyperparameter tuning (learning rate, regularization, decision tree specifications)

3. vBDT trained to identify solar atmospheric neutrino events.

o 2. reduces data to a higher concentration of neutrino-like events (including
conventional atmospheric & solar atmospheric)
o Introduce additional features that may prove useful in discriminating between

solar and conventional atmospheric neutrinos (e.g. morphology classifier helpful in
differentiating neutrino flavor)
12



Conclusion and outlook

e |mproving existing solar atmospheric neutrino searches by extending on
both time and energy

e (Custom event selection designed to fill gap between low- and high-energy
event selections

e Combined HE and LE sensitivity a 4x improvement on previous limit, only
going to improve with inclusion of ME event selection

13




Thank you!
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Solar gamma-rays
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Source: Q-W. Tang, K.C.Y. Ng, T. Linden, B. Zhou, J.F. Beacom, A.H.G. Peter.

e Harder spectrum of solar atmospheric gamma-rays evident during period of
solar minimum
e Unexplained dip in flux between 30-50 GeV
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Future oscillation studies
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Source: from A. Diaz, C.A. Arguelles, G.H. Coallin, J.M. Conrad,
M.H. Shaevitz.



