Search for PBH evaporations with H.E.S.S.

Thomas Tavernier, J.F. Glicenstein, F. Brun, V. Marandon

IRFU / CEA-Paris Saclay, Université Paris-Saclay

thomas.tavernier@cea.fr

4 juillet 2021

Physics assumptions

- Primordial black holes are an hypothetical type of black hole that formed in the early universe.
- Various scenarios :
 - $\bullet\,$ Gaussian density fluctuations $\rightarrow\,$ gravitational collapse
 - ightarrow Power law mass spectrum
- $\rightarrow\,$ The idea that PBH may account for a significant fraction of the invisible mass experiences a renewed popularity.
 - According to Hawking Radiation process :
 - PBHs with an initial mass of $\sim 5.0 \times 10^{14} g~(\sim 10^{-19} {\rm M}_{\odot})$ should reach there final stage of evaporation now. Possibly emitting bursts of high-energy particles, including gamma radiation in the TeV energy range.

A D N A B N A B N A B N

Overview of the analysis

- \rightarrow Goal of the analysis : search TeV γ -ray bursts
 - Timescale of a few seconds to few minutes
 - Signal of few photons
- \rightarrow Analysis steps :
 - Use efficient algorithm to detect such bursts
 - OPTICS algorithm
 - Have a reliable estimation of the false positive background
 - Estimated through shuffling several times the timestamps in the data, then running the same algorithm.
 - Estimate signal expected with H.E.S.S. from PBH evaporations
 - Using PBH evaporation spectrum, convoluted whith the H.E.S.S. IRF
 - Use statistical method to put upper limits on PBH evaporations rate, or eventually claim a signal detection
 - Maximum likelihood ratio
 - Use these upper limits to constrain cosmological models

Dataset

- H.E.S.S.-1 observations between January 2004 and January 2013. (GPS & HEGS data set)
- Runs of poor quality (bad weather or technical problems) excluded
- Sources region are excluded
- Use only runs available for both H.E.S.S. analysis chains. (X-check)
- Final dataset : 11494 runs (4924 hours).

.

OPTICS Algorithm (3D approach)

OPTICS : ordering points to identify the clustering structure

3 input parameters :

- n : MinPts : minimum number of points in cluster (2)
- *ϵ* : maximum distance (0.14° : 2x point source radius definition in H.E.S.S. (was 0.2° for PA))
- χ_0 : reachability cut (0.05)

4th Parameter for our analysis : Metric to apply for the time dimension.

Background estimation

False positive background estimation

- Shuffling the time of arrivals of photons
- 200 MC realisations for each run (hereafter OFF data)

6/14

Expected signal from PBH evaporation

Evaporation spectrum :

$$\frac{dN}{dE} = \Phi_0 \times \begin{cases} \left(\frac{E}{E_0}\right)^{-\alpha_0} & \text{for } E \leq E_{\text{cut}} \\ \left(\frac{E_{\text{cut}}}{E_0}\right)^{\alpha_1 - \alpha_0} \left(\frac{E}{E_0}\right)^{-\alpha_1} & \text{for } E \geq E_{\text{cut}} \end{cases}$$

with :

•
$$E_{\rm cut} = 38. (\frac{1}{\Delta t})^{1/3.}$$
 TeV

See J.H. MacGibbon & B.R. Webber (1990)

Assuming the predicted PBH evaporation spectral shape, the expected number of photons is computed for each run using the HESS IRFs.

Expected signal from PBH evaporation

The information we really need :

Number M of cluster with a size of $N_{\rm obs}$ photons observed during the run

$$M(N_{\rm obs}) = \int d\Omega \int_0^{T_{\rm run}} dt \int_0^\infty dr r^2 \dot{\rho}_{\rm PBH} P(N_{\rm obs}|\mu(r))$$

Where :

- Ω is the solid angle of the H.E.S.S. field of view
- r is the distance of the PBH
- $\mu(r)$ is the mean number of photons seen with H.E.S.S.
- $\dot{
 ho}_{
 m PBH}$ the PBH evaporation density rate

$$M(N_{\rm obs}) = \Omega T_{\rm run} \dot{\rho}_{\rm PBH} \frac{\left(r_0 \sqrt{N_0}\right)^3}{2} \frac{\Gamma(N_{\rm obs} - 3/2)}{\Gamma(N_{\rm obs} + 1)}$$

where N_0 is the mean number of photons seen for a PBH evaporation at given distance r_0

Thomas Tavernier, J.F. Glicenstein, F. Brun,

Significance test and Upper limits estimation

Feldman-Cousins test :

$$\frac{\mathcal{L}_{H_1}}{\mathcal{L}_{H_0}} = \prod_{n_{\rm ON} \in \text{Data}} \frac{\mathcal{P}(n_{\rm ON} | \lambda = n_{\rm OFF} + M(n_{\rm phot}, \dot{\rho}_{\rm PBH}))}{\mathcal{P}(n_{\rm ON} | \lambda = n_{\rm OFF})}$$

Where $M(n_{\rm phot},\dot{
ho}_{\rm PBH})$ is the expected excess.

$$TS = -2\ln\left(\frac{\mathcal{L}_{H_1}}{\mathcal{L}_{H_0}}\right) = 2 \times \sum_{n_{\rm ON}} M + n_{\rm ON} \left(\ln(n_{\rm OFF}) - \ln(n_{\rm OFF} + M)\right)$$

Thomas Tavernier, J.F. Glicenstein, F. Brun,

4 juillet 2021 9 / 14

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results : Limits on PBH evaporation rate

- Analysis was ran for 10s, 30s, 60s, 120s time scales
- No significant PBH evaporation signal $(\sigma < 0.5)$
- $\begin{array}{l} \mbox{Preliminary best 99\% C.L} \\ \mbox{upper limit :} \\ \dot{\rho}_{\rm PBH} < 700 \mbox{ pc}^{-3} \mbox{yr}^{-1} \end{array}$

- 4924 hours of HESS data
- HAP photon list

→ ∃ →

- ∢ /⊐ >

Cosmological interpretation : assumptions

- PBH creation induced by Gaussian density fluctuations
- initial mass distribution described by a power law :

$$\frac{d\rho_{PBH}}{dM_i} = \frac{\rho_0}{M_*} \left(\frac{M_i}{M_*}\right)^{-\beta}$$

with :

 M_i the initial mass of PBHs

 M_{\ast} the initial mass of PBHs at the final stage of evaporation here and now.

2 < β < 3

 ρ_0 is given by $\rho_0 = (\beta - 2) \frac{\Omega_{\text{PBH}} \rho_c}{M_*}$ where Ω_{PBH} is the fraction of the critical density ρ_c

< □ > < □ > < □ > < □ > < □ > < □ >

Cosmological interpretation : assumptions

Local rate of evaporation is given by [Halzen et al 1991]

$$\dot{
ho}_{\mathrm{PBH}} \simeq rac{lpha(M_*)}{M_*^3} \eta
ho_0 \simeq rac{lpha(M_*)}{M_*^4} \eta(eta-2) \Omega_{\mathrm{PBH}}
ho_c$$

where :

- α(M) counts the degrees of freedom of the particles contributing to the energy loss as a function of the black-hole mass
- η is the ratio between the global and local dark matter densities.

using

- $\eta > 1.6 \times 10^4 \ \mathrm{[bovy \ 2012]}$
- $\alpha(M_*) > 10^{17} \mathrm{~kg^3~s^{-1}}$

Our upper limits of $\dot{
ho}_{\rm PBH}$ constrains the product $(eta-2)\Omega_{\rm PBH}$

イロト イヨト イヨト イヨト

Cosmological limits on $\Omega_{\rm PBH}$

- $rac{\Omega_{\mathrm{PBH}}}{\Omega_{\mathrm{DM}}} < 1$ for most values of beta
- It would require fine tuning for these object to be responsible for the major part of the invisible mass

4 juillet 2021

13/14

Summary

- Analysis summary :
 - Analysis was ran on \sim 5000 hours of H.E.S.S data for $\Delta t = 10, 30, 60$ and 120 seconds using HAP analysis chain.
 - No hint of signal.
 - 99% CL upper limits lies between 6.5×10^3 and $7.0\times10^2~pc^{-3}~yr^{-1}$ is competitive with previous measurements
- Assuming PBH are induced by Gaussian density fluctuations and follows Hawking's evaporation process : PBHs are unlikely to participate significantly in the missing mass of the universe.

< □ > < □ > < □ > < □ > < □ > < □ >

4 juillet 2021

14/14