

RUHR-UNIVERSITÄT BOCHUM

COINCIDENT NEUTRINO AND GAMMA-RAY EMISSION FROM BLAZARS

ICRC 2021 Marcel Schroller, Julia Becker-Tjus, Patrick Reichherzer,

Ilja Jaroschewski, Mario Hörbe, Wolfgang Rhode | marcel.schroller@rub.de

Motivation I – AGN as Multi-Messenger Sources

- Active Galactic Nuclei (AGN) are one of the most luminous, observable sources
 - Engine of the cosmic rays with highest energies up to $E_{CR} = 10^{21} \text{eV}$?
- Modelling is challenging; ambiguous signatures need to be understood via numerical simulation.

Fig. 1: Unified model of AGN: Classification regarding line of sight, luminosity and radio emissivity. Ref. to: [Beckmann, Shrader POS (2013)]

Motivation II – γ suppression vs. ν -emission

- Example: Observations of blazar PKS 1502+106:
 - Hint onto association of blazar to IceCube-event IC-190730A
- Long-term survey of gamma-ray and radio fluxes show some correlation
- At event time IC-190730A: Deficient gamma-ray flux while de-correlated, strong radio activity
- Question: Can we implement models, which reproduce this behavior?

Fig. 2: Photon fluxes in gamma-ray, radio, and x-ray energies, as observed by different observatories. Radio and gamma-ray seem to be correlated, until the neutrino event (violet line). Ref. to: [Kun et al. ApJ (2021)]

RUHR UNIVERSITÄT BOCHUM

RUB

Simulation Setup

- CRPropa (Cosmic Ray Propagation) version 3.1x [Merten et al. JCAP (2017)]
 - Modified by M. Hörbe and M. Schroller for custom photon fields, temporal scalings of arbitrary choice [Hörbe et al. MNRAS (2020)]
- Various Hadronic interactions
- Ballistic propagation via Cash-Karp or Boris-push method
 - Different approach: Commonly simulated purely diffusive!

Setup: Scheme

Fig. 3: Propagation of the plasmoid and declarations. Ref. to: [Hörbe et al. MNRAS (2020)]

Setup: Parameter (excerpt)

Parameter	Symbol	Value
Plasmoid Radius	R	10 ¹³ m
Plasmoid Propagation Start	$r_{\rm start}$	10 ¹⁴ m
Plasmoid Propagation End	rend	$r_{\text{start}} + 10 \text{ pc}$
Plasmoid Lorentz Factor	Г	10
Magnetic Field Initial RMS Value	B_0	1 G
Proton (primary) Initial Energy	$E_{p,inj}$	10 ⁸ GeV
Proton Target Density (up-scaled)	$n_{0, \text{plasma}}$	10^{15} m^{-3}
Electron Minimal Lorentz Factor	$\gamma_{e,\min}$	10
Electron Maximal Lorentz Factor	$\gamma_{e,\max}$	10^{6}
Electron Spectral Index	α_e	2.6
Energy Density Ratio U_p/U_e	X	1/100
Accretion Disc Inner Radius	$3R_s$	$8.86 \cdot 10^{11} \text{ m}$
Accretion Disc Outer Radius	$R_{\rm acc}$	10 ¹⁴ m
Accretion Disc Temperature	T_0	10 eV/k_b

Tab. 1: Parameter setup for simulation of the plasmoid.Ref. to: [Hörbe et al. MNRAS (2020)]

Assumptions:

- Equipartition: $U_B = U_p + U_e$
- Purely turbulent field with $l_c = 10^{-2}R$
- Injection monochromatic (Tab. 1) or power law w. spectral index α_p = 2;

 $E_{min} = 10^8 \text{ GeV}$

 $E_{max} = 10^{11} \, \text{GeV}$

- Instantaneous injection
- Black body field of accretion disk Doppler deboosted inside plasmoid
- Synchrotron radiation of ambient electrons

Setup: Results (combined messengers)

Fig. 4: Relative particle readouts of primary and secondary particles at the plasmoid's surface.

RUHR

UNIVERSITÄT BOCHUM **RU**B

Correlation between γ -rays and Neutrinos

- Investigation of particle readouts of photons and neutrinos at equal points in time
 - Can we observe a correlated emission of both messengers?

Fig 7.:The correlation between neutrino and gamma-ray emission at equal points in time, which are color-coded by the bar on the right-hand side. Gamma-rays are absorbed by the dense photon fields, while neutrinos escape.

Fig 8.: The correlation between neutrino and gamma-ray emission at equal points in time, which are color-coded by the bar on the right-hand side. In this unphysical view-case, the Breit-Wheeler pair production of secondary γ -rays with background photons is disabled for visualization.

Summary

- A simulation scheme is established for the ballistic propagation of hadronic plasmoids traveling along an AGN jet axis.
- A first analysis of simultaneous γ -ray and neutrino emission has been performed.
- For a full analysis of temporal correlation of gamma-ray and neutrino emission in absorbing environments, higher statistics is needed.

Outlook

- Inclusion of radio-emission to the particle readouts
- Transformation of signatures to the observer's frame
- ... and many more ideas for projects!

RUHR

UNIVERSITÄT BOCHUM RUR

Transport in Turbulent Fields: Ballistic vs. Diffusive

Transport in turbulent fields: Criteria

Following [Reichherzer et al. MNRAS (2020)]:

The reduced rigidity
$$ho = rac{r_{
m g}}{l_{
m c}} = rac{E}{qcB\,l_{
m c}}$$

- Reduced rigidity ρ can be used as criterion to distinguish between the necessity to either propagate ballistically or diffusively:
 - Ballistic motion for $\rho > 1$
 - Diffusive propagation for $l_{min}/l_{max} \le \rho \le 1$

System: parameter comparison

i	P _i	former Value V _i	new value W _i
1	Radius of plasmoid R	1e13 m	1e13 m
2	Spacing Δs	2*R	2*R
3	timestep Δt	33358 s	33358 s
4	# timesteps N_t	308557	308557
5	# spatial steps $N_{x,y,z}$	2	2

Magnetic field: former parameter

i	P _i		V _i	W _i
6	# of gridpoints	N _{Gr}	256	512
7	Spacing	Δs_B	R / (128)	R /(256 * 64)
8	Root Mean Value	B_0	1 G	1 G
9	Correlation length	l_c	10^(-2) R	10^(-2) R
10	Lmin	l_{min}	R / (64)	R / (256 * 32)
11	Lmax	l_{max}	R / (32)	R/(32)
12	# of spatial scalings	$N^B_{x,y,z}$	2	4
13	# of temporal scalings	N_t^B	308557	617114
14	Scaling: spacing	Δs^B	2 * R	R
15	Scaling: timesteps	Δt^B	33358 s	16679

Propagation and energy: comparison parameter

i	P _i		V _i	W _i
16	Propagation method	Р	СК	BP
17	Min. step size	Δx_{min}	10^(-2) R	10^(-5) R
18	Max step size	Δx_{max}	10^(-2) R	10^(-3) R
19	Precision	ε	10^(-3)	10^(-3)
20	Injection energy	Ε	10^(8) GeV	10^(8) GeV
21	Max. trajectory length	d	10 pc	10 pc
22	Minimum energy	E _{min}	10^(2) GeV	10^(2) GeV
23	# of particles	Ν	10000	10000

RUHR

UNIVERSITÄT BOCHUM RUB