A Kinetic Study of the Saturation of the Bell Instability

Georgios Zacharegkas, Damiano Caprioli, Colby Haggerty, Siddhartha Gupta

The problem

- 1. Why does the instability saturate?
- 2. What is the final level of the magnetic field's strength?
- To answer these questions from *first principles* we use self-consistent Hybrid simulations (*dHybridR* with kinetic ions and fluid electrons)
- Simulation setup:
 - Thermal plasma in a 2D box
 - Ambient magnetic field B₀
 - Small initial perturbations δB on B_0
 - CRs drift parallel to B_0
 - We inject CRs parallel to B_0 at a constant rate, with number density n_{cr} , and drift and isotropic momentum p_{cr} and p_{iso}

Results

- 1. Magnetic field initially grows exponentially
- When the field becomes non-linear (δB≥B₀),
 CRs scatter off the field structures
- 3. This transfers momentum from the CRs to the $\log_{a_{s}^{N} a_{s}^{n}}$
- 4. The Bell instability **saturates** because the CR current in the plasma's frame reduces
- 5. The final magnetic field is proportional to the **anisotropic CR momentum flux**:

$$\frac{B_z^2}{2} \approx \Pi_{\rm cr} \approx n_{\rm cr} \gamma_{\rm iso} \left[1 + \left(\frac{p_{\rm iso}}{\gamma_{\rm iso} mc} \right)^{2/3} \right] \frac{p_{\rm cr}^2}{\gamma_{\rm cr}}$$

