ICRC 2021, Berlin

Cosmic ray feedback across the sequence of star-forming galaxies

Roland Crocker

Australian National University

Referencing work done in collaboration with: Mark Krumholz, Todd Thompson, Matt Roth, Siyao Xu, Alex Lazarian, & Silvia Celli

Claim:

A correct understanding of cosmic ray transport in (relatively) dense, partially ionised (but largely neutral) gas that sustains star formation in galaxies allows us to understand the empirical upper limit to the star formation efficiency of 'normal' galaxies

CRs are dynamically important in galaxies:

- Cosmic rays can be measured locally and their presence throughout the Galactic disk and in local group galaxies can be inferred from gamma-ray emission
- As CRs scatter on B field they exchange momentum with the B field
- ⇒ they exert an effective pressure to the gas into which the B field is "frozen in"
- in the Milky Way, CRs provide energy density / pressure equivalent to other ISM phases (Boulares & Cox 1990)
	- ⇒ CRs help to support the scale height of the gaseous disk

Cosmic ray transport

- ❖ Dynamically dominant ~GeV CRs have ~10-6 pc gyro radii in ISM of galaxies
- ❖ The classical picture of CRs scattering on extrinsic magnetic field turbulence that has cascaded down to this ~10-6 pc size scale does NOT work in the largely neutral gas phase where star forms
- ❖ Instead, in this phase, CRs generate themselves the turbulence on which they scatter via the streaming instability
- ❖ Putting streaming and ion-neutral damping into balance, it turns out that **CRs stream at the ION Alfven speed** in the partially ionised (but largely neutral), star-forming gas
- ❖ The CRs execute a **field line random walk** streaming along the turbulent-dynamo-generated magnetic field

❖ Can now estimate the effective macroscopic diffusion coefficient (Yan & Lazarian 2008) for CRs:

Streaming velocity equal to the ION Alfven velocity:

FLRW scattering length = B field coherence length:

So effective diffusion coefficient is:

$$
\kappa \simeq v_{A,i} \frac{l_{\text{coh,B}}}{3}
$$

 $v_s \simeq v_{A,i}$

 $l_{\text{coh,B}} \simeq \frac{2\pi}{M^3}$,

Application: stability of starforming gas column subject to CR flux

Midplane star formation

$$
\frac{d}{d\xi} \left[-\left(\frac{ds}{d\xi}\right)^{-\beta} \frac{dp_c}{d\xi} \right] = 4\tau_s^2 \left(\frac{ds}{d\xi} \right)^{\beta} p_c - \tau_{\text{path}} \frac{ds}{d\xi} p_c + \tau_s \frac{dp_c}{d\xi}
$$

Transport/loss equation

diffusive transport **Fermi-II hadronic**

losses streaming losses

$$
\frac{dp_c}{d\xi} + \xi_{\text{turb}} \frac{d^2s}{d\xi^2} = -\left(1 - f_{\text{gas}}\right) \frac{ds}{d\xi} - f_{\text{gas}} s \frac{ds}{d\xi}
$$

Hydrostatic balance

CR pressure gradient

turbulent pressure gradient

stellar gravity

gas self gravity

+ 4 BCs

ξ: height

$$
\frac{d}{d\xi} \left[-\left(\frac{ds}{d\xi}\right)^{-\beta} \frac{dp_c}{d\xi} \right] = 4\tau_s^2 \left(\frac{ds}{d\xi} \right)^{\beta} p_c - \tau_{\text{path}} \frac{ds}{d\xi} p_c + \tau_s \frac{dp_c}{d\xi}
$$

Transport/loss equation

diffusive transport **Fermi-II hadronic**

losses streaming losses

$$
\frac{dp_c}{d\xi} + \xi_{\text{turb}} \frac{d^2s}{d\xi^2} = -\left(1 - f_{\text{gas}}\right) \frac{ds}{d\xi} - f_{\text{gas}} s \frac{ds}{d\xi}
$$

Hydrostatic balance

CR pressure gradient

turbulent pressure gradient

stellar gravity gravity

+ 4 BCs

gas

self

ξ: height

$$
\frac{d}{d\xi} \left[-\left(\frac{ds}{d\xi}\right)^{-\beta} \frac{dp_c}{d\xi} \right] = 4\tau_s^2 \left(\frac{ds}{d\xi} \right)^{\beta} p_c - \tau_{\text{path}} \frac{ds}{d\xi} p_c + \tau_s \frac{dp_c}{d\xi}
$$

Transport/loss equation

diffusive transport

Fermi-II hadronic

losses streaming losses

s: gas column (ds/dξ: gas density), pc: cosmic ray pressure

stellar

gravity

Hydrostatic balance

CR pressure gradient

turbulent pressure gradient

gas self gravity

+ 4 BCs

$$
\frac{d}{d\xi} \left[-\left(\frac{ds}{d\xi}\right)^{-\beta} \frac{dp_c}{d\xi} \right] = 4\tau_s^2 \left(\frac{ds}{d\xi} \right)^{\beta} p_c - \tau_{\text{path}} \frac{ds}{d\xi} p_c + \tau_s \frac{dp_c}{d\xi}
$$

Transport/loss equation

diffusive transport **Fermi-II hadronic**

losses streaming losses

$$
\frac{dp_c}{d\xi} + \xi_{\text{turb}} \frac{d^2s}{d\xi^2} = -\left(1 - f_{\text{gas}}\right) \frac{ds}{d\xi} - f_{\text{gas}} s \frac{ds}{d\xi}
$$

Hydrostatic balance

CR pressure gradient

turbulent pressure gradient

stellar gravity

+ 4 BCs

gas

self

gravity

$$
\frac{d}{d\xi} \left[-\left(\frac{ds}{d\xi}\right)^{-\beta} \frac{dp_c}{d\xi} \right] = 4\tau \left(\frac{ds}{d\xi} \right)^{\beta} p_c - \tau_{\text{path}} \frac{ds}{d\xi} p_c + \tau_s \frac{dp_c}{d\xi}
$$

Transport/loss equation

diffusive transport

hadronic losses streaming losses

$$
\frac{dp_c}{d\xi} + \xi_{\text{turb}} \frac{d^2s}{d\xi^2} = -\left(1 - f_{\text{gas}}\right) \frac{ds}{d\xi} - f_{\text{gas}} s \frac{ds}{d\xi}
$$

Hydrostatic balance

CR pressure gradient

turbulent pressure gradient

stellar gravity

gas

self

gravity

Transport/loss equation

$$
\frac{dp_c}{d\xi} + \xi_{\text{turb}} \frac{d^2s}{d\xi^2} = -\left(1 - f_{\text{gas}}\right) \frac{ds}{d\xi} - f_{\text{gas}} s \frac{ds}{d\xi}
$$

Hydrostatic balance

CR pressure gradient

turbulent pressure gradient

stellar gravity

gas self gravity

+ 4 BCs

$$
\frac{dp_c}{d\xi} + \xi_{\text{turb}} \frac{d^2s}{d\xi^2} = -\left(1 - f_{\text{gas}}\right) \frac{ds}{d\xi} - f_{\text{gas}}s \frac{ds}{d\xi}
$$

Hydrostatic balance

CR pressure gradient

turbulent pressure gradient

stellar gravity

+ 4 BCs

gas

self

gravity

optical depth to scattering

Summary

- ❖ In the dense, star-forming ISM phase, ~GeV CR transport is described by field line random walk at the **ion** Alfven speed vAi
- \cdot For most modern galaxies, star-forming galaxies ($\Sigma_{\rm gas}$ < 10^{2.5} M_{\odot} /pc²), CR feedback sets an ultimate limit to the star formation rate surface density