Energy spectrum of cosmic rays measured using the Pierre Auger Observatory

Vladimír Novotný^a on behalf of the Pierre Auger Collaboration^b

^a Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic ^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

Contribution #691, discussion session CRI 14 July 2021, 12:00

1

The Pierre Auger Observatory

Surface detector (SD)

- 1600 water-Cherenkov stations
- triangular grid array
 - spacing of 1500 m
 - 1500 m vertical reconstruction (zenith θ < 60°)
 - 1500 m inclined reconstruction ($60^\circ < \theta < 80^\circ$)
 - spacing of 750 m
 - 750 m vertical reconstruction ($\theta < 40^{\circ}$)

Fluorescence detector (FD)

- 4 sites with 27 telescopes
 - 24 horizontally-looking
 - 3 High Elevation Auger Telescopes (HEAT)
- hybrid data FD+SD
- Cherenkov-dominated events FD only

Hybrid detection of extensive air showers

elevation [deg]

Hybrid detection of extensive air showers

x (m)

FD events

Cherenkov-dominated

energy deposit profile

hybrid light flux profile

420 440 460

time slots [100 ns]

camera view

elevation [deg]

50

40

30

20

10 F

190

180

170

160

energy deposit profile

Calibration of SD events

SD data are calibrated to FD energies

- common energy scale

SD 1500 m vertical – S₃₈ - S(1000)+CIC

- threshold 2.5 EeV

SD 750 m – S₃₅ - S(450)+CIC

- threshold 0.1 EeV

SD 1500 m inclined – N_{19}

- scaling parameter
- threshold 4 EeV

Cherenkov-dominated data set

period: 06/2012 - 12/2017

HEAT + Coihueco site telescopes

events reconstructed using
 Profile-constrained Geometry Fit*

fully triggered + minimum bias data

- 10% of partially triggering data
- trigger designed to suppress
 Cherenkov-dominated events

energy threshold decreased to 6 PeV

- due to Cherenkov beam
- limited by exposure systematics

*R. U. Abbasi et al. [HiRes Coll.], Phys. Rev. Lett. 100 (2008) 101101

*V. Novotný [for the Pierre Auger Coll.], Proc. 36th Int. Cosmic Ray Conf., Madison, USA (2019), PoS(ICRC2019)374

Exposure

SD – from active hexagon cells

- geometrical calculation
- flat above threshold

FD – realistic MC simulations

- light from EAS
- atmospheric conditions
- detector status
- evolves with energy

contributions to tolal exposure @ 10¹⁹ eV:

SD 1500 m vertical	74.8%
SD 1500 m inclined	21.6%
SD 750 m	0.1%
hybrid	3.4%
Cherenkov	0%

Exposure – Cherenkov-dominated events

Mass composition uncertainty

- benchmark from Global Spline Fit* model

Fiducial volume cuts on shower geometry

- reduce exposure uncertainty from energy scale

*H. P. Dembinski et al., Proc. 35th Int. Cosmic Ray Conf., Busan, Korea (2017), PoS(ICRC2017)533

Cherenkov-dominated spectrum

energy scale unc. – 15% for Cherenkov

11

Auger measurements

compatible within uncorrelated uncertainties

normalization shifts after comb.:

SD 1500 m	<1 %
SD 750 m	-2 %
SD 1500 m inclined	+5 %
Hybrid	<1 %
Cherenkov	+7 %

*A. Aab et al. [Pierre Auger Coll.], Phys. Rev. D102(2020) 062005

*A. Aab et al. [Pierre Auger Coll.], Phys. Rev. Lett.125(2020) 121106 * A. Aab et al. [Pierre Auger Coll.], submitted to Eur. Phys. J. C

Combined spectrum

likelihood of combination fit = exposure shifts x energy calibration shifts x forward-folding

Spectral features

fit parameters (± stat. ± syst.) $y_0 = 3.09 \pm 0.01 \pm 0.10$ $E_{01} = (2.8 \pm 0.3 \pm 0.4) \times 10^{16} \text{ eV}$ $y_1 = 2.85 \pm 0.01 \pm 0.05$ $E_{12} = (1.58 \pm 0.05 \pm 0.2) \times 10^{17} \text{ eV}$ $y_2 = 3.283 \pm 0.002 \pm 0.10$ $E_{22} = (5.0 \pm 0.1 \pm 0.8) \times 10^{18} \text{ eV}$ $y_2 = 2.54 \pm 0.03 \pm 0.05$ $E_{24} = (1.4 \pm 0.1 \pm 0.2) \times 10^{19} \text{ eV}$ $y_{4} = 3.03 \pm 0.05 \pm 0.10$ $E_{45} = (4.7 \pm 0.3 \pm 0.6) \times 10^{19} \text{ eV}$ $y_{E} = 5.3 \pm 0.3 \pm 0.1$ $J_0 = (8.34 \pm 0.04 \pm 3.40) \times 10^{-11} \text{ km}^{-2} \text{ sr}^{-1}$ vr⁻¹ eV⁻¹

Summary

- energy spectrum estimated from 5 measurements

- three from SD precisely defined exposure, large statistics
- two from FD nearly calorimetric measurement of energy
- all have common energy scale
- estimates **combined into a single result**
 - extends from 6 PeV up to the highest energies
- energy threshold decreased by Cherenkov-dominated data
 - basic systematics addressed
 - calibration of HEAT was improved wrt. ICRC 2019
- low-energy ankle observed
 - mass composition below 0.1 EeV to be studied

Backup

Comparison with other experiments

Normalization of Auger Observatory preliminary result at low energy will be investigated. ¹⁸

Comparison of Cherenkov and SD 750 m

