

UNIVERSITY OF AMSTERDAM

Angular Power Spectrum Use anisotropic features to constrain source populations

- Bright source classes & decaying/ annihilating DM from the galactic centre will show anisotropies on the neutrino sky. - Through Monte Carlo simulations, test model against isotropic sky

Conclusion -

Angular power spectrum is a powerful tool to constrain contributions from source populations:

- Stringent limits on DM cross-section and lifetime using angular information only. With future neutrino observations, the current bestfit DM scenario from IceCube (HESE) observations [3] can be tested.
- See talk by Andrew Cheek on Dark Matter Phenomenology with Angular power Spectrum analysis
- Bright astrophysical source populations like BL Lacs and FSRQs will be significantly constrained if an isotropic distribution will be observed in future. Current 10-yr IceCube data [6] limits $N_{\star} < 600$ at 95CL.

References

[1] J. Stettner, IceCube Collaboration, ICRC 2019 [arXiv:1908.09551].
[2] A. Schneider, IceCube Collaboration, ICRC 2019 [arXiv:1907.11266].
[3] M. Chianese, D. F. G. Fiorillo, G. Miele, S. Morisi, and O. Pisanti, JCAP 1911 (2019) [arXiv:1907.11222].
[4] A. U. Abeysekara et al. (HAWC), JCAP 1802, 049 (2018) [arXiv:1710.10288].
[5] T. Cohen, K. Murase, N. L. Rodd, B. R. Safdi, and Y. Soreq, Phys. Rev. Lett. 119, 021102 (2017) [arXiv:1612.05638].
[6] IceCube Collaboration, Phys. Rev. Lett. 124, 051103 (2020) [arXiv:1910.08488]

Interpreting the high-energy neutrino sky through an angular power spectrum analysis

