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Machine learning techniques are powerful tools for the classification of unidentified gamma-ray sources. We present a new approach based on dense and recurrent deep neural networks to classify unidentified or unassociated gamma-ray sources in the last release of the Fermi-LAT
catalog (4FGL-DR2). Our method uses the actual measurements of the photon energy spectrum and time series as input for the classification, instead of specific, hand-crafted features. We focus on different classification tasks: the separation between extragalactic sources, i.e.
Active Galactic Nuclei (AGN), and Galactic pulsars, the further classification of pulsars into young and millisecond pulsars and the sub-classification of AGN into different types. Since our method is very flexible, we generalise it to account for uncertainties in the predicted classes.
Our list of high-confidence candidate sources labelled by the neural networks provides targets for further multiwavelength observations to identify their nature, as well as for population studies.

Introduction
Gamma-ray observatories as Fermi-LAT build catalogs of individual sources, col-
lecting their main characteristics: measured position and flux at different energies
and times + derived features, obtained from fits to data.

Dataset:
I Last release, 10 years of data: 4FGL-DR2 catalog [1]
I Traditional classification: multi-wavelenght observation, gamma-ray features
I ∼ 30% of detected sources are not classified (UNC)

Our goal: predict source class and its uncertainty with deep learning using
only photon energy spectrum and time series data

Impact: complement population studies; stimulate multi-wavelength follow ups

Strategy
I Energy and time γ-ray spectra only as input data, instead of derived features:

use full information contained in measurements, w/o bias from feature selection
I Dense and recurrent networks: catch correlations in sequential data
I Bayesian networks [4]: estimate uncertainties on predicted source class

Bayesian neural networks: Variational inference
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Fig.2: Left: Sketch of input data: energy spectrum and time series.

Right: Bayesian neural network concept: probability distribution assigned to weights instead of single value

Classification results
Benchmark: accuracy of 97.6% (AGN vs.PSR), 87% (YNG vs. MSP)

Candidate sources follow the expected Galactic latitude distribution

Fig.4:Sky distribution (Galactic coordinates) of: unclassified sources (black), AGN candidates (1050 in total,
red), YNG pulsar and MSP candidates (78 in total, blue).

Confusion matrix :
True AGN True PSR

Predicted AGN 1042.1 ± 3.7 16.4 ± 5.4
Predicted PSR 10.9 ± 3.7 61.6 ± 5.4

[on Test set of 1053 AGN, 78 PSR]
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Fermi-LAT gamma-ray source populations
I Active Galactic Nuclei

(AGN): jets originating from
supermassive black hole at
centre of a galaxy

I Most AGN are blazars: jets
pointing towards line of sight,
divided into BL Lacs (BLL),
Flat Spectrum Radio Quasars
(FSRQ) according to spectral
characteristics; ∼ 40% of un-
certain type (BCU)

I Pulsars (PSR), divided into
young pulsars (YNG) and mil-
lisecond pulsars (MSP)
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Fig.1: 4FGL-DR2 composition. Solid lines: class as re-
ported in the catalog. Dashed linesL class predictions ob-
tained using deep learning classifiers

Focus: features in AGN vs. PSR classification
Derived source features such as variability index (relative variability between dif-
ferent time bins wrt mean value) or curvature (significance for the log parabola
spectral fit) were used in previous machine learning classification, see e.g. [2, 3].
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Fig.5: Curvature-Variability plot for 4FGL-DR2 (contours) and candidate sources (markers)

Architecture, training, testing

I Input data: energy spectrum (7) +
time spectrum (10)

I Classified 4FGL-DR2: used for train-
ing (70%), testing (30%)

I Optimized performance: ten-fold
cross-validation

I Complementary performance mea-
sures: accuracy, confusion matrix,
ROC/AUC [6]

Fig.3: Sketch of architecture for AGN vs. PSR classification. Each box illustrates one layer (type,
output shape). Dense layers are also substituted with recurrent or Bayesian layers.

Focus: Bayesian classification of BCU
Uncertainties on predicted gamma-ray source classes so far never estimated.
We are investigating Bayesian classification of blazars of uncertain type (BCU) in
BLL vs. FSRQ [4, 5]

I Simplest architecture: dense neu-
ral network on energy spectrum
only

I Dense layers substituted by
Bayesian layers

I Data augmentation to stabilize
the Bayesian classifier
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Fig.6: distribution of FSRQ classification uncertainties for different data augmentation setups.

Classification uncertainties estimate for candidate BLL and FSRQ

Conclusions & outlook

A novel deep learning approach to classify unidentified or unassociated gamma-ray
sources in the last release of the Fermi-LAT catalog (4FGL-DR2) was presented.

I Main novelties and results:

1. Deep and recurrent networks using energy and time spectra data only suc-
cessfully used to predict source classes for 4FGL-DR2 unclassified sources

2. Bayesian networks explored to estimate classification uncertainty.

I Outlook:

1. Use predicted classification with uncertainties to complement population
studies of extragalactic and Galactic sources

2. Extend energy and time spectra with data from other observatories.
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