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RADAR ECHO TELESCOPE

for COSMIC RAYS

Detection of 1n-ice particle cascades created by UHE cosmic ray

air shower cores using RADAR echo techniques [1, 2, 3]

@ Surface stations for triggering and independent reconstruction

of the air shower, using scintillators and surface antennas

@® Radar echo detector for detection and reconstruction of the air

shower, using in-ice radio phased transmitters and receivers

@® |n situ test towards neutrino cascade detection

Triggering

@® Ensures UHECR has entered
radar detector volume

@® Removes requirement of
radar self trigger

@ Data collected aids in
development of radar self
triggering routines

@® Aim for 100% trigger efficiency

at 10'" eV for air showers with
0° < 6 < 30°

Reconstruction

Triggering scheme:

Both scintillators in one

station trigger above
6 MeV (1 MIP) threshold

¥

All stations in one cluster
meet trigger requirements

¥

Trigger sent to radar detector

@ Reconstruction of energy, core position and arrival direction
independent of radar detector, using radio and particle information from surface detection

@® Comparison and validation of radar detector reconstruction
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@ Studies to determine reconstruction technique and energy resolution ongoing

Prototyping

@ Test system for communication
antenna read out triggering

1) 1 MIP in both scintillators

2) Coincidence detection in picoscope

3) Particle data readout and antenna trigger
4) Antenna read out 30-300 MHz

and

@® Preliminary data collection for background filtering

and reconstruction

Rooftop in Brussels (VUB)
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@ In collaboration with cross calibration array (contribution 102388)
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Diagram of test system

plasma lifetime and a 160 W transmitter at 100 MHz
Use both the distribution at

nearest energy below and nearest J1¢?
energy above primary energy

y

Expected events per day for different signal-to-
noise levels with respect to a thermal noice
| RMS of 8 pV. We use a 160 W transmitter at
| 100 MHz and a plasma lifetime of 10 ns. Upper
| and lower bounds correspond to the under and
overestimation of the primary energies.
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3) Check if given signal-to-noise ratio is
reached in reflection signal using 1
RadioScatter

4) Calculate expected event rate by
taking into account cosmic ray flux, 2 :
effective area, limited zenith angle I DU DU U N oXiva104.00d50 1

16 16.5 17 175 18 18.5 [3] S. Prohira et al., Phys. Rev. Lett. 124, 091101 (2020)

aperture and surface trigger E primary [log,  eV] U] & Pl ol 3, [Bremsam
Nucl. Instrum. Meth. A922, 161 (2019)
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