Eduardo F. Bueno On behalf of the AMS-02 collaboration

university of groningen

Precision Measurement of Cosmic-Ray Deuterons with the Alpha Magnetic Spectrometer 37th International Cosmic Ray Conference

Nuclei in cosmic rays

Primaries are produced and accelerated at the sources. Secondaries are produced by the interactions of primaries with the interstellar medium (ISM).

Primaries (⁴He, C, O, ...)

AMS-02 isotope talks at ICRC 2021:
#320 He: F. Giovacchini
#992 Li, Be: L. Derome

³He, Li, Be, ...)

Secondaries carry important information about the propagation processes and properties of the ISM. Deuterons are the most abundant secondary species.

The mass is defined by:

 $=\frac{RZ}{\beta\gamma}$ Μ

Performance of mass reconstruction in AMS-02

The three complementary ranges allow for the separation of isotopes up to 10 GeV/n.

1. Event selection

- a) Z = 1 selection;
- b) Good rigidity reconstruction;
- c) Good velocity reconstruction in each range.

2. Event counting:

- a) Slice data in velocity bins;
- b) Template fits on mass distributions.
- 3. Unfolding of the counts
- 4. Flux calculation:

$$\Phi(E_{kn}) = \frac{N(E_{kn})}{A \epsilon \Delta T \Delta E_{kn}}$$

N: counts

ΔE_{kn}: bin width
ΔT: exposure time
A: effective acceptance
ϵ: trigger efficiency

Sources of background

1. Interactions inside AMS:

 Interactions can affect the reconstruction of velocity and rigidity.

2. Fragmentation of heavier nuclei above L1:

 Helium may fragment above the first tracker layer, producing Z = 1 particles (protons, deuterons and tritons)

Signal extraction: simulations

- Parametric mass templates built from MC simulations of each species.
 - Same model for the 3 velocity ranges (TOF, NaF and AGL)

Signal extraction: data Fit to ISS data (TOF): 0.202 < E/n < 0.212 GeV/n

 Number of protons, deuterons and tritons extracted by fitting the mass distributions obtained in MC to data.

Events 10⁵ **Deuterons** TOF **Protons 10**⁴ $He \rightarrow T$ Fit 10³ 10² 10 L 0.5 1.5 2 2.5 3 3.5 Mass [GeV/c²] Fit to ISS data (AGL): $3.133 < E_{L}/n < 3.218$ GeV/n Events 10⁶ 10⁵ AGL **10**⁴ 10³ 10² 10 1.5 2 2.5 1 3 3.5

Mass [GeV/c²]

Deuterons before AMS

14

AMS deuteron flux

UNDER EMBARGO

Kinetic energy per nucleon [GeV/n]

Fluxes versus rigidity

D/p flux ratio

D/⁴He flux ratio

Conclusion

- Deuteron flux measurement was performed between 0.2 and 10 GeV/n, based on **15 million** deuteron events detected by AMS between May 2011 and January 2020
- AMS is also able to perform the measurement as a function of rigidity, providing measurements of the deuteron flux, the D/p flux ratio and D/⁴He flux ratio from 2 to 20 GV