A next-generation optical sensor for IceCube-Gen2
Vedant Basu *, 1, Aya Ishihara 2, Nobuhiro Shimizu 2, Markus Dittmer 3 for the IceCube Collaboration
1 University of Wisconsin - Madison, 2 Chiba University, 3 Westfälische Wilhelms-Universität Münster
* Presenter

Overview
IceCube-Gen2, a planned expansion of the IceCube facility at the South Pole, aims to increase the rate of observed cosmic neutrinos and detect fainter sources [1]. The IceCube Upgrade, as a first step, will consist of 693 densely spaced new sensors [2], enhancing sensitivity to GeV neutrinos. A new sensor module is being developed using 4” PMTs in a glass pressure vessel, for installation into holes drilled into ice. Challenges arise from constrained borehole size and PMT close-packing. The electronics have been designed to fit the physical and power requirements.

Mechanical Structure Design
The support structure must orient PMTs while accommodating low-temperature shrinkage. The design thus dovetails with the PMT installation procedure.

PMT Interfacing Procedure
- Use pre-cured silicone gel pads, to enhance photon capture rates via total internal reflection.
- Pads are cast onto PMT face; care taken to obviate bubble formation at interface.

Support Structure
- Support structure constructed of sheet metal.
- PMTs aligned using plastic bearings. An inflatable bladder around the PMT neck exerts outward pressure for gel pad interfacing.
- Features combine to yield a scalable cost-effective solution.

Waveform MicroBase
- Extending the dynamic range for neutrino events of varying photon yield, both the anode and a preceding dynode are digitized, using a 2-channel ADC at 60 MSPS.
- To further improve timing resolution, a delay line module within FPGA records leading edge time with 1ns resolution.

From Upgrade to Gen2
The Long Optical Module (LOM), an evolution of the IceCube Upgrade modules, limits sensor diameter to 12” to save on drilling. Multiple 4” PMTs are fitted to optimize effective area.

Upgrade mDOM
Upgrade D-Egg
The LOM power consumption is limited to 4W, requiring a lower digitisation rate of 60 MSPS, and waveform processing shifted to PMT bases. Due to Gen2’s large string spacing (240m), the lower ADC rate has only a modest effect on reconstructions.

Central Board
The new bases, referred to as Waveform MicroBases, have shapes optimized for close packing.

Electronics Design
The LOM builds upon the mDOM electronics [3], expanding the MicroBase, which regulates the PMT high voltage (HV) generation, to include data acquisition (DAQ) functionality.

Outlook
- Guiding principle: to arrive at an economical, fault-tolerant solution, easily scalable for mass production.
- Support structure evolved to create viable assembly procedure.
- Design and verification of electronics proceeding apace.
- Orders have been placed for first prototypes of components such as new PMTs and pressure vessels.

References