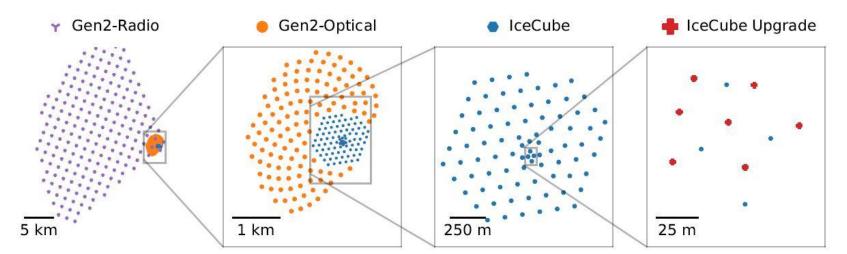
A next-generation optical sensor for IceCube-Gen2

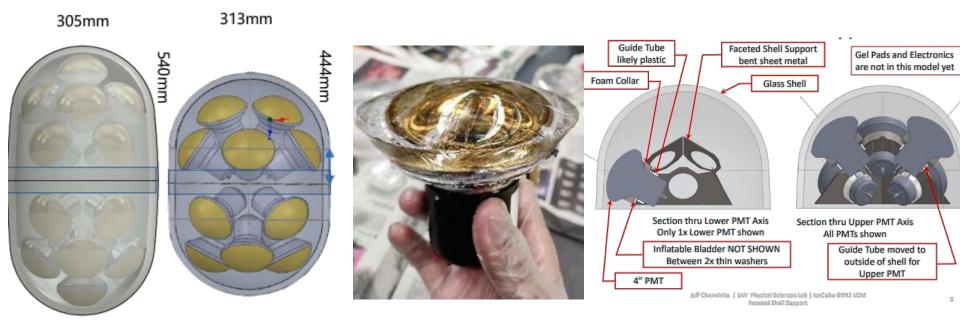

Vedant Basu^{*,1}, Aya Ishihara², Nobuhiro Shimizu², Markus Dittmer³ for the IceCube-Gen2 Collaboration ¹ University of Wisconsin - Madison, ² Chiba University, ³ Westfälische Wilhelms-Universität Münster * Presenter

Multi-PMT Optical Module for IceCube-Gen2

- Long Optical Module (LOM): evolution of modules used in IceCube Upgrade (deployment planned for 2023-24)
- Goals of design optimization:
 - Reduced sensor diameter to save time and cost on hole-drilling
 - Increased sensor effective area using larger PMTs to reduce channel count
 - Improved electronics for reduced power and easier assembly, manufacture, and testing

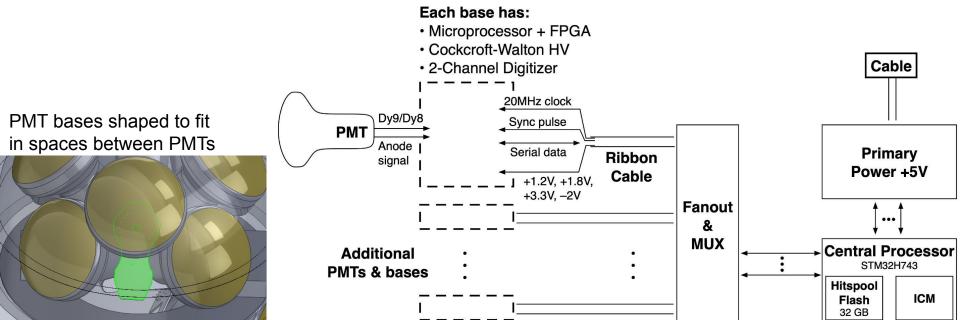
• Near term plan:

- Build 20 Modules, deploy 12 for the Upgrade
- Develop preliminary design for Gen2, which will have over 10k modules across 120 strings



LOM Mechanical Design

4"PMT x 16


4"PMT x 18

- Support structure orients the PMTs while absorbing stresses
- Pre-cured optical gel 'pads' used to interface PMTs to glass pressure vessel
- Support structure designed to aid bubble-free PMT-vessel interface

LOM Electronics Design

- Waveform processing and bias circuits moved to PMT base
- A fanout carries communication, synchronization clocks, and power to PMT bases from the Central Board, which is also responsible for transmission to the surface.
- Dynamic Range extended by digitizing both anode and dynode 8
- Flash memory chip retains all hit data for a week.

Outlook

- Various design constraints to be considered and optimized in the LOM are illustrated here, and possible solutions are discussed
- Guiding principle is to arrive at a solution that is economical, fault-tolerant and easily scalable for mass production.
- Design and testing of various subsystems underway, and the first prototypes are expected to be completed soon.