

RUHR-UNIVERSITÄT BOCHUM

COSMIC-RAY TRANSPORT IN BLAZARS

DIFFUSIVE OR BALLISTIC PROPAGATION?

Contribution 102288

AGN plasmoid model

- Relativistic and compact plasmoids moving along the jet
 - Radii 10^12-10^14 m
 - Turbulence with B = 1 G
 - High densities
- Production of secondaries in plasmoid
- Is transport diffusive or ballistic in plasmoid?

Credit: Hörbe et al. 2020

Diffusive propagation

- Diffusive transport
 - Single particle view: random walk of particles with 50% prob. to change direction
 - Statistical view: transport equation

$$\frac{\partial f}{\partial t} = \sum_{i} \kappa_{i} \frac{\partial^{2} f}{\partial x_{i}^{2}}$$

- A paradox:
 - Each step is made at finite speed
 - Diffusion occurs with infinite speed \rightarrow non-vanishing probability of particles at positions that could not be reached with finite speed
- Its resolution: no contraditction for large times \rightarrow diffusive propagation not valid at early times

Propagation regimes in time

- Initial ballistic propagation turns into diffusion
 - diffusive models cannot describe both
 - Telegraph equation is better suited (see proceeding)

Diffusive approach overestimates particles that leave plasmoid

 \rightarrow diffusive models underestimate production of secondaries in plasmoid

RUHR

BOCHUM

UNIVERSITÄT

RUR

Transport regimes in energy

- Resonant-scattering regime (RSR)
 - Extends over many orders in nature
 - Energy scaling of diffusion coefficient: $\kappa \propto E^{1/3}$
- Quasi-ballistic regime (QBR)
 - Extends over many orders in nature ($r_g \! \gg l_c$)
 - Diffusion coefficients increase fast: $\kappa \propto E^2$
- Mean-free path scales linearly with *K* Much time needed to reach diffusive limit in QBR

RUHR UNIVERSITÄT

BOCHUM

Overview plot

Hillas-like overview plot

- 1. There are different propagation regimes in time
 - 1. ballistic
 - 2. diffusive
- 2. Different energy regimes of particle transport
 - 1. RSR \rightarrow diffusive
 - 2. QBR \rightarrow ballistic

RUHR

BOCHUM

UNIVERSITÄT

RUB