

The GAPS experiment

Two subsytems:

TOF time of flight system, plastic scintilaltor paddles, β measurement, trigger

Si(Li) tracker 1000 detecors in 10 planes, energy resolution at 4 keV for 20 - 100 keV

Event selection

Likelhood techniqe for particle identification. Details in [1]. Analysis in 3 stages:

- **Preselection** Ensure that the reconstructed stopping/annihilation vertex is inside the tracker volume and the and there are enough hits
- Llh construction Use seven variables to construct 2d probability distributions together with the reconstructed velocity.
- Final cuts Cuts on the calculated likelihood ratio optimized individually for three $\cos(\theta)$ bins together with a cut on the mean truncated energy to ensure the reconstruction is compatible with |Z| =2 and a cut on reconstructed $0.3 < \beta < 0.6$

References

- [2] R. Munini, E. Vannuccini, R. Bird, M. Boezio, P. von Doetinchem, C. Gerrity et al., *publication under review* (2021) [3] M. Korsmeier, F. Donato and N. Fornengo, *Physical Review D* 97 (2018) 103011
- [4] A. Coogan and S. Profumo, *Physical Review D* 96 (2017) 083020.

[7] M.W. Winkler and T. Linden, *Physical Review Letters* **126** (2021) [8] V. Poulin et al., *Physical Review D* **99** (2019) 023016 [1808.08961].

[11] G.J. Feldman and R.D. Cousins, *Physical Review D* 57 (1998) 3873.

Searching for cosmic antihelium nuclei with the GAPS experiment

A. Stoess

Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Rd, Honolulu, HI 96822, USA.

Variables

background predictions taken from [8, 9, 10].

Simulation & Reconstruction

award #2030508.

the University of Hawaii Information Technology Services - Cyberinfrastructure are gratefully acknowledged. This research was done using resources provided by the Open Science Grid [12, 13], which is supported by the National Science Foundation

^[1] N. Saffold, T. Aramaki, R. Bird, M. Boezio, S. Boggs, V. Bonvicini et al., Astroparticle Physics 130 (2021) 102580.

^[5] K. Blum et al., *Physical Review D* **96** (2017)

^[6] Y.-C. Ding et al., Journal of Cosmology and Astroparticle Physics **2019** (2019) 004.

^[9] M. Kachelrieß, S. Ostapchenko and J. Tjemsland, *Journal of Cosmology and Astroparticle Physics* **2020** (2020) 048. [10] A. Shukla et al., *Physical Review D* **102** (2020) 063004.

^[12] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy et al., The open science grid, in J. Phys. Conf. Ser., vol. 78 of 78, p. 012057, 2007, DOI. [13] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi and F. Wurthwein, *The pilot way to grid resources using*

glideinwms, in 2009 WRI World Congress on Computer Science and Information Engineering, vol. 2 of 2, pp. 428–432, 2009, DOI.