# Study of the EN-Detectors Array in Tibet

#### Present: Di-Xuan Xiao

Tian-Lu Chen,<sup>*a,b*</sup> Shu-Wang Cui,<sup>*c*</sup> Dangzengluobu,<sup>*a,b*</sup> Denis Kuleshov,<sup>*d*</sup> Bing-Bing Li, <sup>*c*</sup> Mao-Yuan Liu,<sup>*a,b*</sup> Ye Liu, <sup>*e*</sup> Xin-Hua Ma,<sup>*f*,g</sup> Oleg Shchegolev, <sup>*d*</sup> Cong Shi, <sup>*c*</sup> Yuri Stenkin, Vladimir Stepanov, <sup>*d*</sup> Fan Yang, <sup>*c*</sup> and Liangwei Zhang <sup>*c*</sup>

<sup>*a*</sup> Science School, Tibet University <sup>*b*</sup> Key Laboratory of Comic Rays, Tibet University, Ministry of Education <sup>*c*</sup> College of Physics, Hebei Normal University <sup>*d*</sup> Institute for Nuclear Research, Russian Academy of Science <sup>*e*</sup> School of Management Science and Engineering, Hebei University of Economics and Business <sup>*f*</sup> Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences <sup>*g*</sup> TIANFU Cosmic Ray Research Center

PoS(ICRC2021)189

### *Electron-Neutron detector* (EN-detector)

EN-detector can detect both thermal neutrons and "charged" components in a same EAS.

Two arrays composed by EN-detectors are running at high altitude.





at Tibet University(3800m a.s.l)

Schematic of EN-detector: right  $\rightarrow$ 

← Left: PRISMA-16 at Yangbajing Cosmic Ray Observatory(4300m a.s.l)



1- HV input port, 2- d8 preamplifier (DIU), 3- d5 preamplifier (UI), 4- black tank, 5- PMT fixed holder, 6-PMT, 7light collecting cone, 8- scintillator

#### Generation Neutron influenced by soil moisture



Neutron spectrum over periods from rainy season to dry season.

Fitting parameter of b over periods.

PRISMA-16 found:

The neutron spectrum in dry season is higher than in rainy season. The maximum difference could be 11%. But it will be averaged for long-term measurement.

PoS(ICRC2021)189

### Counting rate increasing during earthquake

20210312 to 20210326 Charged

S 0.4 25 °C uluuluuluuluu 20 0.3 0.2 0.1 -0.1 Earthquake(182<sup>rd</sup> hour) Aftershock(208<sup>th</sup> hour) On march 19, at 14:11 when Nagu earthquake Time(hours) from 20210312 happen, P-TU recorded a possible increase. 20210312 to 20210326 Neutrons S And another increase was recorded when 1.5 aftershock happen on March 20, at 2:04 am. ШнЙ 0.5 -0.5 Earthquake(182<sup>rd</sup> hour) Aftershock(208<sup>th</sup> hour) Time(hours) from 20210312  $S = \frac{N}{\langle N \rangle}$ -1, *N* is counting rate of neutron or charged particle. 30-min smoothing is used.

## "Sand cube" to reduce seasonal effect

"Sand cube" is a cubic tank of 1 m<sup>3</sup> filled with dry sand, on which an EN-detector mounted.

"Sand cube" can apart detector and soil, and dry sand is favorable for neutron generation.

Therefor "seasonal effect" caused by water could be reduced.



Sand Cube under construction