



<sup>1</sup>Astronomy & Astrophysics Group, Raman Research Institute, Bengaluru 560080, India <sup>2</sup>Centre for Astro-Particle Physics, University of Johannesburg, Auckland Park 2006, South Africa

### Objectives

The mass composition of UHECRs ( $E \gtrsim 0.1$  EeV) is not well known due to uncertainties in hadronic interaction models

- Mixed composition of light-to-heavy nuclei fits the UHECR spectrum & composition, but the  $\langle X_{\max} \rangle$  fit can be improved further
- We add another light nuclei component  $(^{1}H)$  from a discrete source population extending up to the highest energies [1]
- We constrain the maximum allowed proton fraction at the highestenergy bin at  $3.5\sigma$  statistical significance
- We also present the secondary neutrino flux in one- and twopopulation models, constraining the composition at highest energies

### Methods

- UHECRs induce extensive air shower (EAS) in the atmosphere, which is reconstructed to measure the maximum shower-depth profile  $(X_{\text{max}})$ • We use parametrizations by PAO to calculate  $\langle X_{\rm max} \rangle$  and its dispersion  $\sigma(X_{\rm max})$  from the first two moments of  $\ln A$
- **3** Updated parameter values (S. Petrera and F. Salamida (2018), PAO) from CONEX simulations is used for post-LHC model SYBILL2.3c
- We consider that all elements are injected by the sources following the spectrum given as

$$\frac{dN}{dE} = A_0 \sum_i K_i \left(\frac{E}{E_0}\right)^{-\alpha} \times \begin{cases} 1 & (E - \frac{E}{2R_{\text{cut}}}) \\ \exp\left(1 - \frac{E}{2R_{\text{cut}}}\right) & (E - \frac{E}{2R_{\text{cut}}}) \end{cases}$$

**5**Cls-I injecting <sup>1</sup>H has a distinct  $R_{\text{cut},1}$  and  $\alpha_1$  (2.2 <  $\alpha_1$  < 2.6); the normalization is fixed by proton fraction in highest-energy bin  $(f_{\rm H})$ **6**Cls-II injects He, N, Si, and Fe ( $\sum_i K_i = 100\%$ ); contribution from both population is used to calculate best-fit

# **UHECR** spectrum and composition in two-population model

## Saikat Das<sup>1</sup>, Soebur Razzaque<sup>2</sup> and Nayantara Gupta<sup>1</sup>

### Results

• A combined fit of spectrum and composition measured by PAO [2, 3]is performed above the ankle  $E \gtrsim 5 \cdot 10^{18} \text{ eV}$ • We calculate best-fit values of  $\log_{10}(R_{\text{cut},1}/\text{V})$ ,  $\log_{10}(R_{\text{cut},2}/\text{V})$ ,  $\alpha_2$ , and composition  $K_i$  for each combination of  $\{\alpha_1, f_H\}$ 



- The pure-proton component favors higher values of cutoff rigidity than Cls-II and steeper injection spectral index
- 2 The shaded region corresponds to the allowed range of neutrino flux from Cls-I and Cls-II for  $f_{\rm H} = 1.0 - 20.0\%$
- **3** With increase in exposure time, GRAND should constrain our twopopulation model parameters if  $f_H \gtrsim 10\%$

 $\leq ZR_{\rm cut}$ )  $(\mathbf{1})$  $> ZR_{\rm cut})$ 

Figure 1:Best-fit spectrum+composition in two-population case ( $\alpha_1 = 2.2, f_{\rm H} = 1.5\%$ )



• We estimate the maximum allowed proton fraction at  $3.5\sigma$  confidence level (C.L.) in the highest-energy bin. For  $\alpha_1 = 2.2, 2.4, \text{ and}$ 2.6 this corresponds to  $\approx 12.5\%$ , 15%, and 17.5% respectively • Here, both H and Fe contributes at the cutoff region. Thus, pion production is responsible for cutoff in H ( $\log_{10}(R_{\text{cut},1}/\text{V}) = 19.5$ )and maxm rigidity at the source for Cls-II  $(\log_{10}(R_{\text{cut},2}/\text{V}) = 18.3)$ **3** Including  $(1+z)^m$  redshift evolution indicates luminous AGNs or GRBs as candidates for Cls-I  $(m_1 = +3)$  and tidal disruption events (TDEs) as the candidates for Cls-II  $(m_2 = -6)$ 



Figure 2:Cosmogenic neutrino flux from Cls-I and Cls-II in two-population model

#### Conclusions

#### References

[1] S. Das, S. Razzaque and N. Gupta, Eur. Phys. J. C 81 (2021), 59 [2] F. Fenu (Pierre Auger Collabn.), *PoS* ICRC2017 (2018), 486 [3] J. Bellido (Pierre Auger Collabn.), *PoS* ICRC2017 (2018), 506