MODELING THE SPECTRUM AND COMPOSITION OF ULTRA-HIGH-ENERGY COSMIC-RAYS USING TWO EXTRAGALACTIC SOURCE POPULATIONS

Saikat $Das^{a,*}$ · Soebur Razzaque^b · Nayantara Gupta^a

^aAstronomy & Astrophysics Group, Raman Research Institute, Bangalore 560080, India ^bCentre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

A mixed composition of light-to-heavy nuclei elements (¹H, ⁴He, ¹⁴N, ²⁸Si, ⁵⁶Fe) at injection fits the ultrahigh-energy cosmic ray (UHECR; $E > 10^{17}$ eV) spectrum data measured by the Pierre Auger Observatory, beyond the ankle, i.e., $E \gtrsim 5 \times 10^{18}$ eV. The simulated $\sigma(X_{\text{max}})$ in the one-population model indicates that the addition of a light nuclei component up to the highest observed energies can improve the combined fit of the UHECR spectrum and composition. We consider the light nuclei to originate from a discrete source population consisting of protons (¹H). We constrain the maximum allowed proton fraction at the highest-energy bin at 3.5σ statistical significance, which ranges from 12.5% - 17.5%for proton injection spectral index $2.2 \leq \alpha \leq 2.6$. Thus, a non-zero proton fraction is inevitable. Although a positive evolution index is preferred in the one-population model, the best-fit value changes sign in the two-population model. Only the sources within $z \lesssim 1$ are considered because UHECRs from higher redshift contribute below the ankle due to increased photodisintegration. Including the redshift evolution of sources as a free parameter further improves the composition fit. We find that low-luminosity gamma-ray bursts match the best-fit evolution index in the case of the one-population model. Active galactic nuclei are the plausible candidates for light nuclei injection in the two-population model, whereas tidal disruption events can inject heavy nuclei composition. We also present the secondary neutrino flux in one- and two-population models, constraining the composition at highest energies. The cumulative neutrino spectrum in the two-population model at $E \gtrsim 0.1$ EeV is dominated by GZK neutrinos from $p\gamma_{\rm CMB}$ interactions due to the high values of E_{max} for protons, near the Δ -resonance threshold.

*Speaker