

SIMULATION OF SOLAR NEUTRON FLUX IN THE EARTH'S ATMOSPHERE

UN M POSGR/DO

Monterde-Andrade F.¹, González L.X.^{1,2}, Valdés-Galicia J.F.¹, Muraki Y.³, Matsubara Y.³, Sako T.⁴, Watanabe K.⁵, Morales-Olivares O.G.⁶, A. Hurtado¹, O. Musalem¹, Newton-Bosch J.¹, Perea-Contreras S.¹

¹ Instituto de Geofísica, Universidad Nacional Autónoma de México. Ciudad de México, 04510, México.

² LANCE/SCIESMEX. Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México. Morelia, Michoacán, 58190, México.

³ Institute for Space-Earth Environmental Research, Nagoya University. Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.

⁴ Institute for Cosmic Ray Research, University of Tokyo. Kashiwanoha, Kashiwa, Chiba, 277-8582, Japan.

⁵ National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan.

6 Escuela Nacional de Ciencias de la Tierra, Universidad Nacional Autónoma de México. Ciudad de México, 04510, México.

SOLAR NEUTRONS AND THE EARTH'S ATMOSPHERE

- Produced by nuclear reactions induced by collisions of protons (p⁺) and He nuclei, accelerated at the reconnection site of magnetic field lines after a solar flare.
- ✤ Relativistic n_s released from the Sun may reach 1 AU, according to their survival probability (P_s), which is a function of n_s energy (E_n).
- The n_s flux is scattered at the Earth's atmosphere. Based on the n_s zenith angle (θ_i) , such flux attenuation will become significant. Also, some of this collisions are able to start air showers.

Simulation of solar neutron flux with CORSIKA

CORSIKA: widely used tool to perform cosmic rays simulations.

FLUKA: low energy interaction model.

- Main input parameters are:
 - Observation level: Sierra Negra volcano (SN) in Mexico.
 - Spectrum (j):
 - X1.3 and M3.9 flares: from FIB SEDA-AP, calculated j=3.5 and j=2.6, respectively.
 - ➤ X17 flare: j=3.
 - Energy interval:
 - > X1.3 flare: $E_n = 0.1 0.8$ GeV.
 - > M3.9 flare: $E_n = 0.1-3$ GeV.
 - > X17 flare $E_n = 0.1-20$ GeV.

✤ Primary flux (F):

> X1.3 and M3.9 flares: sum of the total events.

SIMULATION OF SOLAR NEUTRON FLUX WITH CORSIKA

* X17 flare: we used the counting enhancement (ΔN) of the S1_with_anti channel of the SNT-SN, its effective area (S), detection efficiency (ϵ) and energy interval per time bin (ΔE), according to:

 $\mathbf{F} = \Delta \mathbf{N} / (\mathbf{S} * \Delta \mathbf{E} * \boldsymbol{\varepsilon}) \qquad (1)$

Longitudinal Energy Distribution (LED); shows the flux average energy variations. The peak corresponds to the first interaction, followed by an exponential decrease. Longitudinal Distribution (LD); shows an average of the flux variations due to attenuation and air shower generation.

Longitudinal Energy Distribution (LED); shows the flux average energy variations. The peak corresponds to the first interaction, followed by an exponential decrease. Longitudinal Distribution (LD); shows an average of the flux variations due to attenuation and air shower generation.

Longitudinal Energy Distribution (LED); shows the flux average energy variations. The peak corresponds to the first interaction, followed by an exponential decrease. Longitudinal Distribution (LD); shows an average of the flux variations due to attenuation and air shower generation.

- Interactions and multiplicity for the X17 flare: ~86-89% of interactions and ~93-97% of particle production, take place in a energy (E) range attributed to secondary particles..
- Percentage of n_s that reach the SNT-SN without starting a particle shower
- This is consistent with the n_s detection for the X17 flare of September 07, 2005.

- Results evaluation: we plotted data (5 min counting rate) from the S1_with_anti channel of the SNT-SN for September 07, 2017 and fitted the background as a third order polynomial, we also calculated a significance of $\pm 3\sigma$.
- No increment, associated with the n_s released by the X1.3 or M3.9 flares, is observed.

CONCLUSIONS

- According to our simulations, atmospheric attenuation and energy dissipation of n_s are more significant for higher θ_i . The collisions of n_s decreased the E_n by ~ one order of magnitude at the STN-SN level.
- Only secondary n arrived at the SNT-SN for the X1.3 and M3.9 flares. This is consistent with SNT-SN data, since no enhancement was observed.
- We estimated that ~11-14% of the initial n_s , associated with the X17 flare, reached the SNT-SN. Thus, our results are a theoretical confirmation of the n_s detection of 07-09-2005.