

Performance of machine learning algorithm for predicting muon multiplicity in the INO-ICAL prototype

Lakshmi Murgod

Central University of Karnataka -585367, India

ICRC 2021

India based Neutrino Observatory (INO)

- Proposed underground laboratory (≈1.5 km rock overburden),
- Primary goals:
 - Measurement of atm. neutrino oscillation parameters using Iron CALorimeter (ICAL)
 - Addressing the mass hierarchy problem
- As a first phase study, atmospheric neutrinos with energy from 1-15 GeV are to be studied

INO-ICAL

ICAL			
No. of modules	3		
Module dimension	$16~\mathrm{m}\times16~\mathrm{m}\times14.5~\mathrm{m}$		
Detector dimension	$48 \text{ m} \times 16 \text{ m} \times 14.5 \text{ m}$		
No. of layers	151		
Iron plate thickness	5.6 cm		
Gap for RPC trays	4.0 cm		
Magnetic field	1.5 Tesla		
RPC			
RPC unit dimension	$2 \text{ m} \times 2 \text{ m}$		
Readout strip width	3 cm		
No. of RPC units/Layer/Module	64		
Total no. of RPC units	$\sim 30,000$		
No. of electronic readout channels	$3.9 imes 10^6$		

Table 1: Specifications of the ICAL detector.

Fig. 1: Schematic view of INO-ICAL detector with magnet coils shown on top.

Background

- -Prototype stacks continuously track cosmic muons
- -Analysis routines
 - focus on single muon tracks
 - Reject noisy tracks
 - $\circ \longrightarrow$ Multi-muon track also rejected as noise
 - $\circ \rightarrow$ Reduces the physics potential
- This work: Development of a ML-based algorithm for:
 - Identifying multi-muon events
 - Predicting the multiplicity

Fig 2: Event with multiplicity 6

Prototype Stack

Fig 3. 1m x 1m RPC stack at TIFR

Number of detector layers	12
Distance between each layer	16.8 cm
Number of strips	32

Machine Learning (ML)

XGBClassifier model

Training(80%) Testing(20%)

Fig 4: Data set pattern

Data generation

Dataset	No. of events for each multiplicity	Max. multiplicity	Tot. No. of events
I: Clean tracks	1000	11	11000
II: Tracks including (η=80%)	1000	7	7000
III: Tracks including η & (Sm)	1000	5	5000
IV: Tracks including η, Sm & (Nm)	1000	3	3000

Table 1. The four datasets used for machine learning model training and testing.

• Detector efficiency (η) : 80%

- Strip hit multiplicity (Sm) : 1.5
- Noise multiplicity (Nm): 3 hits per layer

Results

Dataset	Time taken for training (min)	Time taken for testing (sec)
I	4.2	0.4
Ш	3	0.3
III	1.5	0.2
IV	0.3	0.03

Fig.5: Efficiency plot as a function of multiplicity for all four datasets

Table 2. Time taken for training and testing each model

• All the datasets were trained and tested on a system with Windows 10 Pro, a 64-bit operating system, and an Intel Core i7-7500U CPU with 16 GB physical memory.

ICRC 2021

Santonico, R. and Cardarelli, R., 1981. Development of resistive plate counters. Nuclear Instruments and Methods in physics research, 187(2-3), pp.377-380.

Samuel, D., Onikeri, P.B. and Murgod, L.P., 2017. Angular resolution of stacked resistive plate chambers. Journal of Cosmology and Astroparticle Physics, 2017(01), p.058..

Samuel, D. and Suresh, K., 2018. Artificial neural networks-based track fitting of cosmic muons through stacked resistive plate chambers. Journal of Instrumentation, 13(10), p.P10035.

Bheesette, S., 2009. Design and characterisation studies of resistive plate chambers (Doctoral dissertation, Ph. D. Thesis, Indian Institute of Technology, Mumbai).