37th International Cosmic Ray Conference 12 – 23 July 2021 Berlin, Germany (Online)

Characterization of the DIMS system based on astronomical meteor techniques for macroscopic dark matter search

D. Barghini,^{a,b} S. Valenti,^a S. Abe,^c M. Arahori,^d M. Bertaina,^a M. Casolino,^{e,f} A. Cellino,^b C. Covault,^g T. Ebisuzaki,^e Y. Fujiwara,^h D. Gardiol,^b M. Hajdukova,ⁱ R. Ide,^d Y. Iwami,^j F. Kajino,^d S.W. Kim,^k J.N. Matthews,^j K. Nadamoto,^d I.H. Park,^m L.W. Piotrowski,ⁿ H. Sagawa,^o D. Shinto,^j K. Shinozaki,^p J.S. Sidhu,^g G. Starkman,^g S. Tada,^d Y. Takizawa^e and Y. Tameda^j

for the DIMS collaboration

The **DIMS** (Dark matter and Interstellar Meteoroid Study) experiment was born in 2017 aiming to search for fast-moving objects in the Earth's atmosphere by observing the sky with wide-field and **high-sensitivity CMOS cameras** [1].

- → macroscopic dark matter (e.g., nuclearites)
- \rightarrow interstellar meteoroids

We reviewed two models for the theoretical description of nuclearite dynamics into the atmosphere

- → we generalized [2] for an **arbitrary nuclearite speed**
- → [2] and [3] give huge differences in the visual magnitude of such objects

$$\begin{cases} M = 1 \text{ g} \\ h = 10 \text{ km} \\ \rho = \rho_N \\ v = 250 \text{ km s}^{-1} \\ \rightarrow \Delta \mathcal{M} = +43 \end{cases}$$

 10^{4}

[2] De Rujula & Glashow, Nature (1984)[3] Sidhu et al., JCAP (2019)

We derived the calibration of the instrument by means of **astrometric and photometric techniques** applied to imaged stars in the FoV.

- → ~ 900 identified stars per image up to +8 mag
- \rightarrow 57° x 34° FoV
- \rightarrow sub-pixel positional precision

DIMS CONSTRAINTS FOR MACROS

We deduced expected constraints [4] by the DIMS experiment for macro observations

h_{beg} [km]

- +6 limiting absolute magnitude for meteors
- none of the analyzed events showed a clear non-meteor origin

60 (a)

occurrence

very different constraints in the parameter space according to the two models [2,3]

80

