GAMMA-RAY BURSTS AT TEV ENERGIES

Lara Nava

INAF

Osservatorio Astronomico di Brera

13 JULY 2021

ICRC 2021

EMISSION FROM GRBS

Two examples of multi-wavelength radiation from GRBs

GRB 080319B Racusin et al., 2008

GRB 110731A Ackermann et al., 2013

THE STANDARD MODEL

PROMPT EMISSION: OPEN ISSUES

Unknown radiative mechanism

PROMPT EMISSION: OPEN ISSUES

Recent advances

PROMPT EMISSION: OPEN ISSUES

Recent advances

AFTERGLOW EMISSION: OPEN ISSUES

Interpreted as synchrotron radiation from forward shock

10-7 10-8 BAT 0.3–10 keV flux (erg cm⁻² s⁻¹) 10-9 **XRT** 10-10 10-11 10-12 10-13 0.1 10 100 1000 **10**⁴ **10**⁵ 1 time since burst (s)

flares/plateaus still miss an interpretation

AFTERGLOW EMISSION: OPEN ISSUES

Interpreted as synchrotron radiation from forward shock

lack of constraints on the parameters of the forward shock

HIGH-ENERGY EMISSION: OPEN ISSUES

Afterglow emission

- Consistent with synchrotron afterglow radiation
- Extra-component in spectra?? (no clear evidence)

HIGH-ENERGY EMISSION: OPEN ISSUES

Prompt emission

10²

Nava 2018

 \bigcirc

EVIDENCE FOR HIGH-ENERGY ADDITIONAL SPECTRAL COMPONENTS FROM GEV OBSERVATIONS

TEV OBSERVATIONS: CHERENKOV TELESCOPES

Current generation on IACTs

- MAGIC / HESS / VERITAS
 - number of observed GRBs:
 - hundreds
 - low energy threshold:
 - 50 / 50 / 100 GeV
 - time delay:
 - < 100 s / 100-1000 s

until 2019: no detections, only upper limits –

TEV OBSERVATIONS: CHERENKOV TELESCOPES

Current generation on IACTs

- MAGIC / HESS / VERITAS
 - number of observed GRBs:
 - hundreds
 - low energy threshold:
 - 50 / 50 / 100 GeV
 - time delay:
 - < 100 s / 100-1000 s

until 2019: no detections, only upper limits –

DISCOVERY OF TEV EMISSION FROM GAMMA-RAY BURSTS

SED modeling

- Long GRB
- $E_{prompt} = 2.5 \times 10^{53} \text{erg}$

• *z* = 0.42

MAGIC detection

- 1-40 minutes after the GRB
- in the energy range 0.3-1 TeV

Light curve modeling

Light curve modeling

H.E.S.S. DETECTION OF GRB 180720B

H.E.S.S. DETECTION OF GRB 190829A

H.E.S.S. DETECTION OF GRB 190829A

H.E.S.S. DETECTION OF GRB 180720B

Two Additional Detections

GRB 201015A (MAGIC)

- Long GRB
- *z* = 0.42
- *E*_{prompt} = 10⁵⁰ erg
- obs. started ~40 s after the prompt
- Significance of detection > 3 sigma

Contribution at this ICRC: Presenter: **Satoshi Fukami** Observation of a relatively low Iuminosity long duration GRB 201015A by the MAGIC telescopes Presenter forum 16. July - 18:00

GRB 201216C (MAGIC)

- Long GRB
- *z* = 1.1
- *E*_{prompt} = 5 x 10⁵³ erg
- 57 seconds after the prompt
- Significance of detection > 5 sigma

Contribution at this ICRC:

Presenter: Yusuke Suda

Very-high-energy gamma-ray emission from GRB 201216C detected by MAGIC Discussion session on 21. July - 12:00

SHORT GRB 160821B

- *▶ z* = 0.16
- Kilonova emission
- MAGIC: excess ~3 sigma

MAGIC Collab., ApJ, 2021

CTA - CHERENKOV TELESCOPE ARRAY

Consortium paper on prospects for CTA observations of GRB in preparation

SIMULATIONS

- 190114C as a template
- moved at 3 different z
 - z = 0.42 (original z)
 - z = 0.25
 - z = 0.078 (same as HESS GRB 190829A)

Paper on core science with ASTRI-MA in preparation

OPEN QUESTIONS & FUTURE CHALLENGES

- Does SSC interpretation hold for all detected GRBs?
- Which conditions are required to produce VHE component? How common are these conditions?
- Nature of TeV emission always the same or competing processes can dominate the TeV range?
- VHE observations during the prompt: unique tool to understand the origin of prompt radiation
- VHE emission in short GRBs: understand differences short/long (environment, jet,...)

DISCUSSION SESSION: GRBS IN THE VHE REGIME

Conveners: B. Reville and L. Nava

Radiation from Gamma-Ray Bursts, from radio to soft gamma-rays, is commonly interpreted as synchrotron emission from non-thermal electrons. In the afterglows of the prompt event, the upscattering of synchrotron photons by the same energetic electrons (the SSC mechanism) is expected to take place at some level, contributing to the GeV-TeV emission. External Compton and hadronic mechanisms have been proposed to play an important role in the production of VHE radiation. After several years of effort, significant TeV detections of long GRB afterglows are at last a reality. The nature of the VHE emission and the implications on GRB physics will be discussed, including exciting prospects for the detection of prompt and afterglow emission with current and future facilities.

Discussion Sessions: 12:00-14:00				
12.7.				
13.7.	CRI 2 GAD, GAI, 52 constraining UHECR srcs Anal. meth., ca	2 NU 32 at, Ch. media & //L det. calib	CRD, MM 15 Future instr.	O&E 29 Outreach Online
14.7.	CRI 4 GAI 55 CR energy spectrum PeVatrons	NU 34 radio detec. of neutrinos		SH 20 GCR long. modul.
15.7.	CRI 6 GAD, GAI 4 MM CR anisotr. AGN & Jets	9 2	CRD 14 CRs and ISM	SH 22 atm. effects CRs
16.7.	CRI,CRD 12 MM Gal part. acceleration	NU 36 shower rec. pointing	MM 28 Search for Transients	
19.7.				
20.7.	CRI 10 GAD, GAI, 46 CRD EAS rec & ana SNRs	NU 38 future neutrino tels	GAI 56 new instr. ground based	DM 40 DM indirect cosmol subst.
21.7.	CRI13GAI54New inst. and tools for EASGRBs in VHE	DM, NU 41 DM indirect phot. & neutr.	MM 26 Gal sources & winds	SH 24 Ground obs, low E CRs
Room 1: CRI Room 2: GAI/ GAD Room 3: NU Room 4: MM, CRD Room 5: SH, DM, OE				