

JUNO Physics Prospects

João Pedro Athayde Marcondes de André for the JUNO Collaboration

IPHC/IN2P3/CNRS

J. P. A. M. de André for JUNO

The JUNO Collaboration

	Country	Country Institute		Institute	Country	Institute
	Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
	Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
	Brazil	PUC	China 🚽	Tsinghua U.	Germany	U. Tuebingen
	Brazil	UEL	China	UCAS	Italy	INFN Catania
	Chile	PCUC	China 🛸	USTC	Italy	INFN di Frascati
	Chile	UTFSM	China	U. of South China	Italy	INFN-Ferrara
-	China 🔧	BISEE	China	Wu Yi U.	Italy	INFN-Milano
	China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
	China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
2	China	ChongQing University	China	Xiamen University	Italy	INFN-Perugia
	China	CIAE	China	Zhengzhou U.	Italy	INFN⊦Roma 3
	China	DGUT	China 👷 🗼	NUDT	Latvia	IECS
	China	ECUST	China 🌱	CUG-Beijing	Pakistan	PINSTECH (PAEC)
	China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
S	China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
-	China	IHEP	Czech	Charles U.	Russia	MSU
4.8	China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
	China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
	China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
	China	Nankai U. 🛛 🖉 📂	France	CPPM Marseille	Taiwan-China	National United U.
	China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
	China	Pekin U. 🛛 🖉 🗕	France	Subatech Nantes	Thailand	PPRLCU
	China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
	China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
	China	IGG-Beijing	Germany	TUM	USA	UC Irvine
	China	IGG-Wuhan	Germany	U. Hamburg	- 77	members

J. P. A. M. de André for JUNO

July 12th to 23rd, 2021 2/17

-

JUNO physics

"Neutrino Physics with JUNO," J. Phys. G **43** (2016) no.3, 030401 "JUNO Physics and Detector," arXiv:2104.02565 (2021)

- Neutrino Mass Ordering (NMO)
- Precision measurement of oscillation parameters
- Atmospheric neutrinos
- Geoneutrinos

- Supernova (SN) neutrinos \rightarrow see Xin Huang's talk
- Diffuse SN neutrino background \rightarrow see Jie Cheng's talk
- $\bullet \ \ Solar \ neutrinos \rightarrow see \ Jie \ Zhao's \ poster$
- Nucleon decay & Exotic searches

Research	Expected signal	Energy region	Major backgrounds
Reactor antineutrino	60 IBDs/day	$012~\mathrm{MeV}$	Radioactivity, cosmic muon
Supernova burst	5000 IBDs at 10 kpc	$0{-}80 {\rm ~MeV}$	Negligible
	2300 elastic scattering		
DSNB (w/o PSD)	2-4 IBDs/year	$1040~\mathrm{MeV}$	Atmospheric ν
Solar neutrino	hundreds per year for ^{8}B	$016~\mathrm{MeV}$	Radioactivity
Atmospheric neutrino	hundreds per year	$0.1100~\mathrm{GeV}$	Negligible
Geoneutrino	$\sim 400~{\rm per}$ year	$0-3 {\rm MeV}$	Reactor ν

J. P. A. M. de André for JUNO

Neutrino oscillations with Reactor Antineutrinos

- Distance: selects "oscillation regime"
 - JUNO at maximum $\bar{\nu}_e$ disappearance
 - First experiment to see both Δm^2

• Only sensitive to $\bar{\nu}_{P} \rightarrow \bar{\nu}_{P}$

ICRC 2021

Measuring reactor $\bar{\nu}_e$: Inverse Beta Decay (IBD)

- Detected via IBD: $\bar{\nu}_e + p \rightarrow n + e^+$
 - IBD used since discovery of $\bar{\nu}$
 - Prompt+delayed signal \Rightarrow large background suppression

• $E_{vis}(e^+) \simeq E(\bar{\nu}) - 0.8 \text{ MeV} \leftarrow \text{used to as proxy for antineutrino energy}$

J. P. A. M. de André for JUNO

J. P. A. M. de André for JUNO

ICRC 202

July 12th to 23rd, 2021 6/17

J. P. A. M. de André for JUNO

ICRC 202⁻

July 12th to 23rd, 2021 6/17

The JUNO detector

43.5 m (Acrylic Sphere: \emptyset =35.4 m)

→ Top Tracker (TT)

- Precise μ tracker
- 3 layers of plastic scintillator
- ullet \sim 60% of area above WCD
- Water Cherenkov Detector (WCD)
 - 35 kton ultra-pure water
 - 2.4k 20" PMTs
 - High μ detection efficiency
 - Protects CD from external radioactivity & neutrons from cosmic-rays
- \rightarrow Central Detector (CD) $\bar{\nu}$ target
 - Acrylic sphere with 20 kton liquid scint.
 - 18k 20" PMTs + 26k 3" PMTs
 - 3% energy resolution @ 1 MeV

JUNO-TAO TAO CDR, arXiv:2005.08745

- JUNO-TAO provides reference for reactor spectrum
- Better energy resolution than JUNO (4500 PE/MeV)
- JUNO-TAO detector:
 - 1 ton fiducial volume Gd-LS detector
 - 30 m from one of Taishan's 4.6 GW_{th} reactor core
 - ► 30× JUNO event rate
 - 10 m² SiPM of 50% photon detection efficiency (PDE) operated at -50°C
 - >95% photo-coverage

Measuring NMO with reactor $\bar{\nu}_e$: impact of energy resolution

$\bar{\nu}_e$ oscillated spectrum

+ energy resolution

• Exposure: 20 kt · 6 years

J. P. A. M. de André for JUNO

NMO sensitivity with JUNO

- NMO sensitivity calculated using Asimov sample
- $\Delta \chi^2 = 16$ (ideal case)
- Accounting for systematic uncertainties: $\Delta \chi^2 \approx 10 \Rightarrow \sim 3 \sigma$
- To reach required energy resolution: high light yield + large PMT coverage + good calibration

	Stat.	Core dist.	DYB & HZ	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	$52.5\mathrm{km}$	Tab. 1-2	Tab. 1-2	1%	6.3%	0.4%	1%
$\Delta \chi^2_{ m MH}$	+16	-3	-1.7	-1	-0.6	-0.1	+(4-12)

NMO via combined fits of JUNO and other experiments

- Intrinsic differences between ν_e → ν_e and ν_μ → ν_μ, precise measurements of Δm² obtain different best-fit values for Δm²₃₁ when wrong ordering assumed
 - ▶ JUNO independent of δ_{CP} , θ_{23} , and doesn't rely on matter effects
- Dedicated studies performed with external priors and with other experiments
 - IceCube [1306.3988] & [1911.06745], accelerators [2008.11280], KM3NeT/ORCA

Calibration strategy

"Calibration Strategy of the JUNO Experiment," JHEP 03 (2021), 004

- Goals (essential for NMO):
 - 3% energy resolution @1 MeV
 - energy scale uncertainty < 1%
- 4 complementary calibration systems:
 - Automated Calibration Unit: vertical shaft
 - Cable Loop System: positioning in one plane
 - Guide Tube: check calibration near FV boundary
 - Remotely Operated Vehicle: full detector scan
- Many radioactive sources used

• 3" PMTs: correct any intrinsic 20" PMT non-linearity

Assumptions	a	b	c	$\tilde{a} = \sqrt{a^2 + (1.6b)^2 + (\frac{c}{1.6})^2}$	energy bias (%)	
Central IBDs	2.62(2)	0.73(1)	1.38(4)	2.99(1)	-	
Ideal correction	2.57(2)	0.73(1)	1.25(4)	2.93(1)	-	
Azimuthal symmetry	2.57(2)	0.78(1)	1.26(4)	2.96(1)	-	
Single gamma source	2.57(2)	0.80(1)	1.24(4)	2.98(1)	-	
Finite calibration points	2.57(2)	0.81(1)	1.23(4)	2.98(1)	-	
Vertex smearing(8 cm/ $\sqrt{E(MeV)}$)	2.60(2)	0.82(1)	1.27(4)	3.01(1)	-	
PMT QE random variations	2.61(2)	0.82(1)	1.23(4)	3.02(1)	0.03(1)	
JUNO baseline detector						

ICRC 2021

Precision measurements of $\bar{\nu}$ oscillations

- In order to measure NMO, need exquisite details of oscillation pattern
- \Rightarrow can also profit to extract particular oscillation parameters with precision <1%
- And test oscillations over several periods, probing simultaneously Δm_{21}^2 -driven and $\Delta m_{32}^2 / \Delta m_{31}^2$ -driven oscillation modes.

Precision measurements of $\bar{\nu}$ oscillations

- In order to measure NMO, need exquisite details of oscillation pattern
- \Rightarrow can also profit to extract particular oscillation parameters with precision <1%
- And test oscillations over several periods, probing simultaneously Δm_{21}^2 -driven and $\Delta m_{32}^2/\Delta m_{31}^2$ -driven oscillation modes.

Solar ν

See also poster #1084 by Jie Zhao

- Solar ν harder to detect given no prompt-delayed signature
- Analysis possible assuming 10⁻¹⁷ g/g level for intrinsic ²³⁸U and ²³²Th contamination
- JUNO alone has similar precision to Solar global fit
 - Check tension in between solar v exps. and KamLAND with single experiment!

Atmospheric ν

- Lower sensitivity to NMO (1.8 σ w/ 10 years)
- Ongoing Atmo.+Reactor analysis
- Also able to measure Atmospheric ν spectrum
 - Uncertainties between 10% and 25% w/ 5 years of data expected
 - More info on arXiv:2103.09908

$\begin{array}{c} \text{Other topics in JUNO} \\ \text{Geo } \bar{\nu} \end{array}$

Nucleon decay

• Other nucleon decay modes also being investigated

Among other topics discussed in J. Phys. G **43** (2016) no.3, 030401 and in arXiv:2104.02565 (2021)

J. P. A. M. de André for JUNO

Conclusions

- JUNO will have unique properties: large target mass & good energy resolution
 - Measurement of NMO not relying on matter effects
 - \star > 3 σ with JUNO only, very complementary with other experiments (5 σ within reach!)
 - First observation of several $\bar{\nu}_e$ oscillation peaks within single experiment
 - < 0.6% precision on $\sin^2 2\theta_{12}$, Δm_{21}^2 , and Δm_{32}^2
 - New measurement of atmospheric neutrino spectra in 100 MeV 10 GeV region
 - Rich physics & astrophysics program beyond reactor- $\bar{\nu}$ analysis
 - * Please refer to other JUNO talks/posters @ICRC for some other topics!
- To get there need good understanding of detector response and energy scale
 - JUNO-TAO for reference reactor spectrum
 - Very large photo-coverage & high LS light yield
 - \blacktriangleright Comprehensive calibration strategy \rightarrow clear path to 3% energy resolution
- JUNO expected to start data taking in 2022

Measuring NMO with reactor neutrinos

method: S. T. Petcov, M. Piai, Phys. Lett. B 533 (2002) 94; formulas: S. F. Ge, et al, JHEP 1305 (2013) 131

$$\begin{split} P_{ee} &= \left| \sum_{i=1}^{3} U_{ei} \exp\left(-i\frac{m_{i}^{2}}{2E_{i}}\right) U_{ei}^{*} \right|^{2} \\ &= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21}) \\ &- \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{31}) \\ &- \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{32}), \\ P_{ee} &= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21}) \\ &- \sin^{2} 2\theta_{13} \sin^{2} (|\Delta_{31}|) \\ &- \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{21}) \cos (2|\Delta_{31}|) \\ &\pm \frac{\sin^{2} \theta_{12}}{2} \sin^{2} 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|), \\ \Delta_{ij} &\equiv \frac{\Delta m_{ij}^{2} L}{4E_{\nu}}, \quad (\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}) \end{split}$$

- Normal(+)/Inverted(-) Ordering \rightarrow measurable only if θ_{13} "large"
- Need excellent energy resolution to distinguish fast oscillation

Substructures in the reactor spectrum

- The reactor neutrino spectrum prediction has a series of limitations
 - ▶ 5 MeV bump, "reactor neutrino anomaly", ...
 - These "large structures" have minor impact on NMO sensitivity
- However, when trying to fix the model "fine structures" can appear
 - Current data from Daya Bay cannot distinguish these differences

Relative difference of 3 synthetic spectra to spectrum predicted from ILL data (Huber+Mueller model)

J. P. A. M. de André for JUNO

ICRC 2021

Test Statistic for NMO

• Reactor v oscillation

$$P = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$$

♦ Daya Bay's 2-v approximation

$$P_{\rm sur} \simeq 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{\rm ee}$$

 $\Rightarrow \text{ In the standard 3-v framework:} \quad \sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$

- "Comments on the Daya Bay's definition and use of Δm_{ee}²",
 S. Parke and R. Zukanovich Funchal, arXiv:1903.001
 - ⇒ (Daya Bay's definition) obfuscates the simple relationship between such an effective Δm² and the fundamental parameters
 - $\Rightarrow \Delta m_{ee}^2 (\text{NPZ}) \equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2 \text{ should be used, since at JUNO's baseline, 6<L/E<25 km/MeV, Daya Bay's definition has a 1% jump.$

◆ S. Parke and R. Zukanovich Funchal, arXiv:1903.001: ⇒ Submitted to PRL

[9] Until JUNO determines the mass ordering, which is highly non-trivial due to stringent requirements on the resolution and linearity of the neutrino energy reconstruction, Δm_{ee}^2 is the only atmospheric Δm^2 that JUNO can report without having to give separate measurements for each mass ordering, as would be needed for Δm_{31}^2 (or Δm_{32}^2), since $\Delta m_{31}^2 = \pm |\Delta m_{ee}^2| + \sin^2 \theta_{21} \Delta m_{21}^2$.

◆ S. Parke and R. Zukanovich Funchal, arXiv:1903.001: ⇒ Submitted to PRL

[9] Until JUNO determines the mass ordering, which is highly non-trivial due to stringent requirements on the resolution and linearity of the neutrino energy reconstruction, Δm_{ee}^2 is the only atmospheric Δm^2 that JUNO can report without having to give separate measurements for each mass ordering, as would be needed for Δm_{31}^2 (or Δm_{32}^2), since $\Delta m_{31}^2 = \pm |\Delta m_{ee}^2| + \sin^2 \theta_{21} \Delta m_{21}^2$.

Attention: although in this plot, $\Delta m_{ee}^2(NPZ)$ is a constant for a given MH, but it is meaningless since the 2-v oscillation formula is then not a good approximation at JUNO's baseline.

 ♦ Response to "Comment on Daya Bay's definition and use of ∆m²_{ee}", Daya Bay collaboration, arXiv:1905.03840
 ⇒ DYB's definition is

 ↓ DYB's definition is

 $P_{\rm sur}\simeq 1-\cos^4\theta_{13}{\rm sin}^22\theta_{12}{\rm sin}^2\Delta_{21}-{\rm sin}^22\theta_{13}{\rm sin}^2\Delta_{\rm ee}$

where Δm_{ee}^2 is a (model independent) fitting parameter based on experimental facts. It enables multiple interpretations, either in the 3-v framework or beyond.

- \Rightarrow DYB did not define Δm_{ee}^2 using fundamental parameters.
- \Rightarrow At JUNO's baseline, the 2-v approximation is no longer valid. We shouldn't use Δm_{ee}^2 (in any definitions). Instead, the fundamental parameters Δm_{31}^2 and Δm_{32}^2 should be used.

5