

Simulating the performance of the Southern Wide-view Gamma-ray Observatory Harm Schoorlemmer - on behalf of the SWGO collaboration

SWGO is a next-generation wide-view gamma-ray observatory to be build in the Andes. Currently, it is in a 3 years research & development phase. We explain the strategy to optimise the design of this water-Cherenkov detector.

Framework

Build-upon the HAWC software, we are developing a flexible framework in which the impact of design choices on science benchmarks will be tested. It consists of the following components:

- Air shower simulation data base (CORSIKA).
- Detector response using GEANT4 with design and layout configurable by steering cards.
- Modular DAQ simulation and event reconstruction and classification code.
- Instrument response functions, compatible with open source tools.

Figure 1: *Different available GEANT4 tank types.* Shown are a fraction of the Cherenkov photon tracks generated by a muon traveling from left to right

Trick: Saving detailed "detected" photon information we can simulate smaller sensors and non-reflective walls without additional dedicated simulations

REFERENCES

- [1] U. Barres de Almeida, et al (this conference)
- [2] A. U. Abeysekara *et al* 2017 *ApJ* **843** 39
- [3] A. Albert *et al*, 2019, arXiv:1902.08429
 [4] Vernetto, S. (2016). Journal of Physics: Con Series. 718. 052043.
- [4] vernetto, S. (2016). Journal of Physics: Coll Series. 718. 052043 [5] https://www.cta-observatory.org/science/cta-performance
- [6] S. Kunwar et al, (this conference)
- [7] R. Conceição et al, (this conference)
 [8] Z. Cao et al, Nature, 594, pages 33–36 (2021)

A starting point

- We defined a reference design:
- Cylindrical tanks with a diametre of 3.8 m, segmented in two compartments (heights: upper 2.5 m and lower 0.5 m)
 Each compartment has an 8" Photon

- Each compartment has an 8" Photon Multiplier Tube.

- All inner surfaces are reflective, except the floor and ceiling in the upper compartment

Inner array 80% fill factor and radius 160 m.
Outer array 5% fill factor and outer radius

300 m.

This design is used to develop the end-to-end framework and provide us with an initial estimate of performance for a set of predefined science benchmark cases [1].

Figure 2: Hit times at the different units for the reference design layout. The time order of the hits is from blue to red.

The optimisation game

The total cost estimate of the reference design is used as a constraint on other component and layout options. Each option will be evaluated in the common framework and tested against science-case benchmarks. An indication of the phase-space that we will explore with this approach in the coming year is shown Figure 3.

The game is on!!!

Fiaure 3: Differential point-source sensitivity phase-space exploration compared to other gammaray observatories [2,3,4,5]. As upper bound on the sensitivity we take a straw man design based on scaled HAWC performance. For improving the low-energy (< 1TeV) performance we are investigating high altitude sites and low threshold detector units. Over the full energy range, dedicated **muon tagging systems** are explored for backaround rejection and compact units are considered to improve direction reconstruction[6,7]. The lower bound of the phase-space corresponds to an improvement over the straw man design with a factor 10 better background rejection combined with a factor of 3 improvement on the Point-Spread -Function (PSF). At the high energy domain (>30 TeV), the recent LHAASOs km2 results [] inspire us to consider options for a **large area** outer detector.