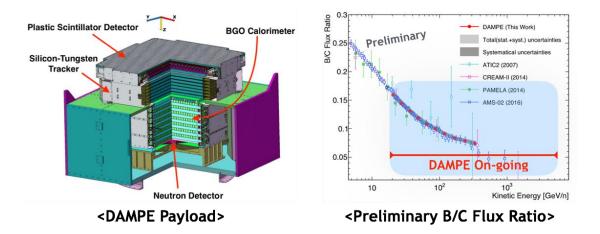


Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays with the DAMPE Experiment

Chuan Yue,^{*a*,*} Zhan-Fang Chen,^{*a*,*b*} Ming-Yang Cui,^{*a*} Dimitrios Kyratzis^{*c*,*d*} and Li-Bo $Wu^{c,d,e}$ on behalf of the DAMPE[†] Collaboration


- ^a Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China
- ^b School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China

^cGran Sasso Science Institute (GSSI), Via Iacobucci 2, I-67100 L'Aquila, Italy

^d Istituto Nazionale di Fisica Nucleare (INFN) - Laboratori Nazionali del Gran Sasso, I-67100 Assergi, L'Aquila, Italy

Abstract

The DArk Matter Particle Explorer (DAMPE), a space-based high energy particle detector, has been operated on-orbit for more than five years. The large geometric factor and good charge resolution enable DAMPE to have very good potential to measure cosmic-rays up to 100 TeV. Knowledge of the boron to carbon (B/C) flux ratio is very important in understanding the prop- agation of cosmic rays, especially in TeV energy range. With a large geometric factor and a good charge resolution, DAMPE is expected to extend the measurement of the B/C flux ratio up to a few TeV/n energies. In this contribution, the latest progress of the B/C flux ratio analysis based on the flight data collected by DAMPE during the 5 years of operation, is presented.

^e State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China