

MPE

Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays with the DAMPE Experiment

Chuan Yue*, Zhan-Fang Chen, Ming-Yang Cui Dimitrios Kyratzis, Li-Bo Wu (on behalf of the DAMPE Collaboration)

*speaker: yuechuan@pmo.ac.cn

2021.07.12 ICRC2021(online)

DAMPE Collaboration

• CHINA

- Purple Mountain Observatory, CAS
- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Modern Physics, CAS
- National Space Science Center, CAS

• ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- INFN LNGS and Gran Sasso Science Institute

• SWITZERLAND

– University of Geneva

Main Scientific Goals:

Origins and Propagations of Cosmic-Rays

Dark Matter Indirected Detection

High Energy Gamma-ray Astronomy

DAMPE Instrument

Neutron Detector

- Charge measurement (dE/dx in PSD, STK and BGO)

- Gamma-ray converting and tracking (STK and BGO)
- Precise energy measurement (BGO Crystals)
- Hadron rejection (BGO and Neutron Detector)

(Chang et al. Astropart.Phys. 95 (2017) 6-24)

Introduction

The precise measurement of boron to carbon flux ratio is essential for the estimation of the average amount of interstellar material traversed by cosmic rays.

Thanks to AMS-02's precise measurements, now we know that the rigidity dependences of primary cosmic rays (e.g. He, C, O) and of secondary cosmic rays (e.g. Li, Be, B) are distinctly different.

The B/C flux ratio above TeV/n, however, remains to be precisely measured.

Data Sample

Dead Time: Instrument Recovery, On-orbit Calibration, etc Data in SAA region are excluded Data during Sep2017 Solar Flare (20170908~20170913) are excluded

MC Simu Sample: Geant4.10.5.p02 (FTFP_BERT)

Pre-Selections

- ▶ Not in SAA region
- ▶ BgoEnergy > 100 GeV
- ▶ High Energy Trigger (G3)
- Track Selection <</p>
- PSD Fiducial
- BGO Fiducial
- PSD PreCut

track - MaxE Psd Hit (L0 & L1)

BGO PreCut

Gap-Incident Event Rejection

Has Cluster on plane0 (X||Y)
MaxE Cluster on plane0 (X||Y)
nHitXY >= 4
Chi2/Ndof < 5.0
Shower Match
(Distance with CogPos of BGO L0-L3 < 15 mm)
StkQ_RMS < 1.2

Unique Selection ClbTrk: Longest & Max Average ClusterE StkTrk: Longest & Max Average ClusterE & Best Shower Match

Flight-Data Carbon (Edep: 13.375 TeV)

Charge reconstruction

Energy Independence:

- 1. Fit the function of C&O charge peak with BGO energy layer by layer
- 2. Modify the PsdQ(0,...,3) event by event: $Q_{i}^{*}(E) = \frac{8.0 - 6.0}{2} * (Q_{i}(E) - CP_{i}(E)) + 6.0$

$$Q_i^*(E) = \frac{0.0 - 0.0}{OP_i(E) - CP_i(E)} * (Q_i(E) - CP_i(E)) + 6.0, \ i = 0, ..., 3$$

*Similar procedure for MC data (i.e. B->5.0, C->6.0, N->7.0, O->8.0)

Charge reconstruction

PsdQ Combination:

$$PsdQ_{com} = \frac{\sum_{0}^{k} PsdQ_{i}}{k}, \ k \leqslant 3$$

* k is the last layer before particle fragmentation

Charge selection

Charge measurement from two PSD layers (Z=4-9)

- Light attenuation (position) correction
- Light saturation (quenching) correction
- Charge energy-Independence

Charge selection

Charge measurement from two PSD layers (Z=4-9)

- Light attenuation (position) correction
- Light saturation (quenching) correction
- Charge energy-Independence

Boron selection: 4.75 < Z < 5.35

Carbon selection: 5.7 < Z < 6.5

Efficiency Validation

A "pure" boron/carbon sample is required for efficiency validation

A much stricter PSD selection: $PsdQ_{Y0} > 0$ & $PsdQ_{Y1} > 0$ & $|PsdQ_{Y0} - PsdQ_{Y1}| < 1$

 $PsdQ_{X0} > 0$ & $PsdQ_{X1} > 0$ & $|PsdQ_{X0} - PsdQ_{X1}| < 1$

$PsdQ_{com} = \frac{\sum_{0}^{k} PsdQ_{i}}{k}, \ k \leq 3$

*A specific sample is selected for charge validation of MC simulation

Background Estimation

Contamination estimation for boron and carbon

Bayesian Unfolding Method [Giulio D'Agostini, NIM A362(1995), 487]

$$N_i = \sum_{j=1}^n \alpha_{ij} M_j (1 - \beta_j)$$
$$\alpha_{ij} = \frac{P(E_{d,j} | E_{0,i}) \hat{N}_i}{\epsilon_i \sum_{i=1}^n P(E_{d,j} | E_{0,i}) \hat{N}_i}$$

 N_i : Unfolded event number M_i : Measured event number β_i : Background $P(E_{d,j}|E_{0,i})$: Response Matrix (MC) \hat{N}_{i} : Prior (E^{-2.7})

Boron to Carbon Flux Ratio

Flux in *i*-th incident energy bin:

* The uncertainty from hadronic model is not included in current analysis

Boron to Carbon Flux Ratio

Flux in *i*-th incident energy bin:

* The analysis of B/C flux ratio up to few TeV/n is on-going

Conclusions

- Since Launched at Dec. 17, 2015, DAMPE ("Wukong") has been operated for more than five and a half years
- Five years of on-orbit data with live time of 1.1977446×10⁸ seconds are analysed for the boron to carbon flux ratio
- The preliminary measurement of B/C flux ratio from 20 GeV/n to 400 GeV/n is reported
- The B/C flux ratio of DAMPE is well consistent with previous space measurements (i.e. PAMELA and AMS-02)
- More studies are in processing, the B/C flux ratio measurement will be extended up to few TeV/n in the near future.

Conclusions

- Since Launched at Dec. 17, 2015, DAMPE ("Wukong") has been operated for more than five and a half years
- Five years of on-orbit data with live time of 1.1977446×10⁸ seconds are analysed for the boron to carbon flux ratio
- The preliminary measurement of B/C flux ratio from 20 GeV/n to 400 GeV/n is reported
- The B/C flux ratio of DAMPE is well consistent with previous space measurements (i.e. PAMELA and AMS-02)
- More studies are in processing, the B/C flux ratio measurement will be extended up to few TeV/n in the near future.

Thanks for your attentions!